已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学 试卷A一 填空题(每空3分,共21分)1、以点A(2,-1,-2),B(0,2,1),C(2,3,0)为顶点,做平行四边形ABCD,此平行四边形的面积等于 。已知函数,则 。已知,则 。设L为上点到的上半弧段,则 。交换积分顺序 。.级数是绝对收敛还是条件收敛? 。微分方程的通解为 。二选择题(每空3分,共15分) 函数在点的全微分存在是在该点连续的( )条件。 A充分非必要 B必要非充分 C充分必要 D既非充分,也非必要平面与的夹角为( )。A B C D幂级数的收敛域为( )。A B C D设是微分方程的两特解且常数,则下列( )是其通解(为任意常数)。A BC D在直角坐标系下化为三次积分为( ),其中为,所围的闭区域。A B C D三计算下列各题(共分,每题分)1、已知,求。2、求过点且平行直线的直线方程。3、利用极坐标计算,其中D为由、及所围的在第一象限的区域。四求解下列各题(共分,第题分,第题分) 、利用格林公式计算曲线积分,其中L为圆域:的边界曲线,取逆时针方向。、判别下列级数的敛散性: 五、求解下列各题(共分,第、题各分,第题分) 、求函数的极值。、求方程满足的特解。、求方程的通解。高等数学 试卷B一、填空题:(每题分,共21分.)将化为极坐标系下的二重积分 。.级数是绝对收敛还是条件收敛? 。微分方程的通解为 。 二、选择题:(每题3分,共15分.)函数的偏导数在点连续是其全微分存在的( )条件。 A必要非充分, B充分, C充分必要, D既非充分,也非必要,直线与平面的夹角为( )。A B C D幂级数的收敛域为( )。A B C D.设是微分方程的特解,是方程的通解,则下列( )是方程的通解。A B C D 在柱面坐标系下化为三次积分为( ),其中为的上半球体。A B C D三、计算下列各题(共分,每题分)、已知,求、求过点且平行于平面的平面方程。、计算,其中D为、及所围的闭区域。四、求解下列各题(共分,第题7分,第题分,第题分) 、计算曲线积分,其中L为圆周上点到的一段弧。、利用高斯公式计算曲面积分:,其中是由所围区域的整个表面的外侧。、判别下列级数的敛散性: 五、求解下列各题(共分,每题分) 、求函数的极值。、求方程满足的特解。、求方程的通解。高等数学 试卷C一 填空题(每空3分,共24分)1二元函数的定义域为 2 3的全微分 _5设,则_ 8级数的和s= 二选择题:(每题3分,共15分)1在点处两个偏导数存在是在点处连续的 条件(A)充分而非必要 (B)必要而非充分 (C)充分必要 (D)既非充分也非必要 2累次积分改变积分次序为 (A) (B)(C) (D)3下列函数中, 是微分方程的特解形式(a、b为常数) (A) (B) (C) (D) 4下列级数中,收敛的级数是 (A) (B) (C) (D) 5设,则 (A) (B) (C) (D) 得分阅卷人三、求解下列各题(每题7分,共21分)1. 设,求2. 判断级数的收敛性3.计算,其中D为所围区域四、计算下列各题(每题10分,共40分)2.计算二重积分,其中是由直线及轴围成的平面区域.3.求函数的极值.4.求幂级数的收敛域. 高等数学 试卷A一、填空题:(每空3分,共21分)、2 29,、,、,、,、,、条件收敛,、(为常数),二、选择题:(每空3分,共15分)、,、,、,、,、三、解:、令 、所求直线方程的方向向量可取为 则直线方程为:、原式 四、解:、令 原式 、 此级数为交错级数 因 , 故原级数收敛 此级数为正项级数 因 故原级数收敛 五、解:、由,得驻点 在处 因,所以在此处无极值 在处 因,所以有极大值、通解 特解为 、其对应的齐次方程的特征方程为 有两不相等的实根 所以对应的齐次方程的通解为 (为常数) 设其特解将其代入原方程得 故特解原方程的通解为高等数学 试卷B一、 填空题:(每空3分,共21分)、, 、,、,、,、,、绝对收敛,、(为常数),二、选择题:(每空3分,共15分)、,、,、,、,、三、解:、令 、所求平面方程的法向量可取为 则平面方程为:3、原式 四、解:、令 原式 、令原式 、 此级数为交错级数 因 , 故原级数收敛 此级数为正项级数 因 故原级数发散 五、解:、由,得驻点 在处 因,所以有极小值 在处 因,所以在此处无极值 、通解 特解为 、对应的齐次方程的特征方程为 , 有两不相等的实根 所以对应的齐次方程的通解为 (为常数) 设其特解将其代入原方程得 故特解原方程的通解为高等数学 试卷C一填空题:(每空3分,共1. 2. 3. 4. 5. 6.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 放射影像学解读培训
- 血液科再生障碍性贫血处置措施培训
- 2025-2026学年度海南省高二上学期学业水平诊断(一)历史试题(含答案)
- 2020-2025年基金从业资格证之私募股权投资基金基础知识题库练习试卷A卷附答案
- 2025技术服务合作合同书
- 2025年广东省水果蔬菜订购合同
- 2025越南钛矿优良交易合同
- 内分泌科糖尿病并发症预防指南
- 人物职业访谈规划
- 2025房屋个人装修合同
- 2024届高考语文专项复习-《逻辑推理》检测卷(含解析)
- 数字化解决方案设计师职业技能竞赛参考试题库(含答案)
- 租房合同范本下载(可直接打印)
- 【MOOC】融合新闻:通往未来新闻之路-暨南大学 中国大学慕课MOOC答案
- DB51-T 10002-2022 公共信息资源标识规范
- 外墙外保温(石墨聚苯板)及装修施工方案
- 成品粮油验收方案
- 高职劳动教育学习通超星期末考试答案章节答案2024年
- 地震灾害应急救援手册
- 九型人格之职场心理学习通超星期末考试答案章节答案2024年
- 佳能-6D-相机说明书
评论
0/150
提交评论