




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计外文资料翻译学 院: 理工学院 专 业: 电气工程及其自动化 姓 名: 师帅 学 号: 051601312 外文出处:Expert Systems with Applications 36(2009) 3153-3166 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 签名: 2009年 4月18日附件1:外文资料翻译译文 基于Web的移动机器人平台的实时演习摘要本文介绍了一种新的基于视觉和网络的移动机器人平台。该平台包括控制和通讯中心,移动机器人和实时支持库。所有的平台活动只为实现计算机视觉技术。 该平台提供监测,远程控制和编程实时教育活动,并帮助用户在没有任何需要额外的软件支持下通过一个标准的网络浏览器实现这些演习。结果表明, 平台的设计和实施为用户(学生和研究人员)在网上申请他们的的实时演习提供了强大的设备和功能。1 .导言最近的在新的战略下网络技术在传统的办法的支持下很快的发展,在许多应用中充满办法和挑战。远程实验已大部分实现。 基于远程和网络技术的实验室通过教育获得了越来越多地新的技术和方法。第一代基于互联网的机器人实验室,被命名为远程机器人主要根据通过直接的人工控制做操作控制(机器臂)或做简单的机械运动,第二代基于互联网的机器人实验室则为不确定的环境和自主神经活动系统而产生。第二代基于互联网的机器人实验室主要特点是他们可调整或可编程序的结构,这使他们能够在实际的环境中用于教育和科学。第二代机器人实验室使用的移动机器人配备了触摸传感器,范围传感器,邻近传感器,对比度传感器,摄像机和音响合成器 。因此,获得的信息从传感器可用于监测结果,或提供反馈控制或其他用途。该相机用于监测机器人的行动。但是,在基于互联网的实验室很少直接使用机器人控制摄像头。其原因是,基于视觉的网络机器人应用需要实时控制,实时图像处理,高带宽转交未加工或被处理的图象用户平台和人工操作; 它也许也导致运转中的延迟,机器人视觉的节目不可能通过网接口被改变。在这项研究中,网络平台支持移动机器人系统的实时实验的设计和执行。该机器人系统支持活动的研发,观察,勘探,安全,尤其是在工程课程教育。所设计的平台被命名为Webbased Small Universal Navigator( Web-SUN)通过基于互联网的通信和控制单元完成各种各样的任务。Web-SUN为用户提供了一个支持实时机器人视觉,控制和编程演习的平台。该平台的移动机器人远程控制所开发的硬件和软件没有使用任何传感器除了相机和光学流速计。这使得该系统有别于同类似的研究。 2 。提出的系统(web-sun)或平台图1展示了提出系统或平台的(web-SUN)一般结构。该系统主要由门户网站和控制中心组成,机器人可移动车、用户和数据库管理模块、支持软件、无线访问接入点、通讯中心、管理、支持图书馆,控制中心和便携式电脑即部分的平台系统。Web-SUN(小型通用浏览器)主要是设计一个多功能的实时演习网络。图.2.部分web-SUN平台:移动机器人车辆。总体而言,这个平台包括三个主要学科,即机械,电子和软件工程,以支持在线或实时服务的应用。更值得强调的是,作者为该系统编写了硬件,软件和构成方法。Web-SUN系统由三轮移动机器人车辆,两度自由运动相机系统和一个用于实时实验的互联网控制中心组成。便携式电脑展开所有关于机器人的进程,以实现对移动平台的控制。为了支持web-SUN系统,减少实时进程的操作时间,各种实时应用程序的帮助支持下制定了这方面的工作进程。所有活动在wcb-Sun平台的监测下运行, 网上的用户控制和监视网络平台的设计。2.1 。结构力学和硬件系统图。2.显示3轮机器车辆,两度自由运动摄像机系统和可控设计单元,便携式PC机支持移动,通信,在线服务和各种控制服务。电脑不能显示这些计算,因为它是机器本身的一部分。该机器车辆由微型控制器,摄像头系统,便携式Wi - Fi网络适配器,发动机和用来带动车辆运行和摄像系统运动的驱动马达还有用于估计位置的速度传感器。如前所述,该机器人是的三个轮子指定其中后轮可以自由移动,前轮负责导向和推动。为了节约成本,移动机器人的身体由PVC(聚氯乙烯)和聚乙烯材料构成。 两个微控制器(从属机和主机)分别控制硬件的实施。从属微控制器负责控制摄像系统,发动机和 传感器和通过I2C串行总线与主微控制器保持联系 。主微控制器负责控制车辆运动,通信 用便携式电脑通过RS232端口与从属微控制器保持联系。此外,四个带变速箱的直流电动机,四个带光速计耦合器的直流电动机, 四个带H桥逆变器的直流电动机驱动器和两个液晶显示器用于这项控制。控制中心设计和管理机器人的所有活动为用户带来了方便。 详细的运动方程式和web-SUN的驱动系统由耶尔马兹等人( 2005年)(2006年)提出 。Web-SUN的职能为通过主微控制器计算并使用运动方程式。 PID控制器是用来控制车辆的位置和运动摄像机系统。运行单独的主从微控制器。相机采用两种实施直流电动机启动法。分别分为横向360度发动机和纵向270度发动机。动力经第一个直流电动机传导转移给车辆齿轮,使其横向移动。 动力经第二直流电动机传导通过齿轮盘纵向传导给车辆齿轮。带PWM直流发动机由PIC16F877的基于H桥直流电动机驱动控制 。该处理器由英特尔迅驰1.6 GHz微处理器, 512 MB内存 和30 GB的硬盘驱动器和内部的Wi - Fi网络适配器组成。图。 3 。软件结构的Web-sun的平台2.2 。软件实施如图3所示Web-SUN平台在互联网帮助下为许多用户提供开发所需的软件。为了实现图3的各个步骤,互联网上的软件资源可以被随即浏览,服务器上软件由HTTP所提供 ,主要程序由控制中心和它的各个部件,机器车辆和带PIC微控制器的摄像头控制程序和数据库验证程序,核查和储存开发了实时网络平台演习的程序所组成。由这些数字可以看出,依照任务和期望平台更方便了控制和受控用户。在该系统中,控制用户可在网络界面通过网络浏览器或管理所有程序来操作机器车辆的移动。其他(受控) 用户可根据控制用户发来的信息来收看其运行的情况。所有连接到该平的用户可通过信息服务和共享资源来进行彼此之间的沟通。这项研究中项目的开发主要包括三个部分:微控制器,控制中心和 网络界面。Web应用程序的编译是 基于PHP的数据库和JavaScript两大软件的支持。微控制器的程序编译使用的MPLAB汇编语言。控制中心软件的开发如图4所绘。捕捉图像和串行通信则通过的第三方组件来实现。 Web-SUN控制中心所使用的网络界面如图5所绘。控制中心是Web-SUN的重要组成部分,它协助管理使系统顺利的运行,执行程序,以方便用户建立数据库,以便开发和测试新的研究,控制中心方便用户使用其权限。无线接入点之间的通信协议 (无线应用协议)和Wi - Fi网络适配器,控制中心和主微控制器,和在主从微控制器的帮助下设计和开发软件模块。控制中心和互联网服务供应商( ISP )的首次信息交换的实现了无线使用WAP和 Wi - Fi无线网络适配器。外部有源天线使通信范围扩大到1公里。其他通信则由控制中心和主微控制器通过RS232端口所形成的Modbus ASCII码提供, 19200波特率, 8位和奇数奇偶。 最后沟通则通过I2C串行端口由主从微控制器提供。该项目也为用户的使用做了更好的服务,如让移动机器人和网络界面之间更顺畅的沟通,通过网络界面解释和执行程序,为网络界面获得结果(图片和变量)的。控制中心项目由标准的IIS Web服务器 和数据库软件所建立。控制中心在计算机和通讯元件控制程序运行。控制中心主要实现可视化和网络服务,远程控制,车辆定位和通信,程序说明,主动或半主动机器人视觉控制和实时应用程序开发。 Web服务器通过Web-SUN为用户提供正常渠道的服务。视频服务器和程序运行在机器人的程序控制和监测结果下取得实时实现。远程控制响应来自网络使用者和系统定位的直接命令。通信并对车辆定位进行管理,以沟通机器人车辆。机器车辆位置可以通过计算的数据获得。自主或半自主机器人视觉控制,通过相机进行图像截取处理所得的信息为操作员提供数据依据。为了维持用户进行实时操作,一个模块通过数据库和其建立了联系。图。 4 。截图Web-SUN控制中心图5.截图Web-sun接口软件。附件2:外文原文(复印件)Web-based mobile robot platform for real-time exercises AbstractThis paper introduces a new vision-based and web-based mobile robot platform. The platform consists of control and communicationcenters, a mobile robot and real-time support libraries. All activities in the platform are achieved by only computer vision techniques.The platform provides monitoring, tele-controlling and programming for real-time educational exercises and helps to the users to achievethese exercises through a standard web browser without any need for additional support software. The results have shown that the proposed,designed and implemented platform provide amazing new facilities and features to the users (students and researchers) in applyingtheir real-time exercises on web._ 2008 Elsevier Ltd. All rights reserved.1. IntroductionRecent developments in web technologies force traditionalapproaches to be supported by new strategies,approaches and challenges in many applications (Guimaraeset al., 2005; Halme, Leppanen, Suomela, Ylonen, &Kettunen, 2003; Hu, Yu, Tsui, & Zhou, 2001; Jacobsenet al., 2004;Marin, Sanz, & Del Pobil, 2003; Saucy & Mondada,2000; Schilling, Roth, & Splica, 2005; Stein, 2000). Inthose, remote experiments have been mostly achieved.Remote and web-based laboratories are literally explodingnew techniques and approaches increasingly adopted foreducation. First generation of web-based robot laboratories,named as tele-robot is mainly based on manipulators(robotic arms) or simple mobile robots that are directlycontrolled by human operators while second generationof web-based robot laboratories operates for uncertainenvironment and autonomic activities (Oboe, 2001; Robinette& Manseur, 2001; Rosch, Schilling, & Roth, 2002).The key features of second generation web based roboticlaboratories are their adjustable or programmable structures,which enable them to be used for educational andscientific purposes in the real-world environments (Kuc,Jackson, & Kuc, 2004; Patel, Sanyal, & Sobh, 2006; Pipe& Carse, 2007; Schilling et al., 2005; Simmons, Fernandez,Goodwin, Koenig, & OSullivan, 2000). The mobile robotsused in second generation robot laboratories have beenequipped with touch sensors, range meter sensors, proximitysensors, contrast sensors, cameras, and sound synthesizerfor realizing activities automatically. Thus, theinformation acquired from sensors can be used to monitorresults or provides feedback for control or other purposes.The cameras are used for monitoring the robot actions.But, direct use of camera for robot motion control is seldomat web-based laboratories. The reasons are thatvision-based web-robot applications require real-time control,real-time image processing, high bandwidths to transferraw or processed images to the user platform and ahuman operator; it might also cause delay in operation(Smith & Hashtrudi-Zaad, 2006; Trahanias et al., 2005),programs for robot vision can not be changed throughweb interface (Kwon, Rauniar, Chiou, & Sosa, 2006;Marin et al., 2003).In this study, a web platform supported by a mobilerobot system for real-time experiments has been designedand implemented. The robot system especially designedfor even surfaces supports the activities on R& D, observation,exploration, security and especially courses in engineeringeducation. The designed platform named as WebbasedSmall Universal Navigator (Web-SUN) accomplishesvarious tasks through web-based communicationand control units. Some of these units have been introducedin Sagiroglu, Yilmaz, and Bayrak (2005, 2006), Yilmaz(2005), Yilmaz, Sagiroglu, and Bayrak (2006a, 2006b).Web-SUN provides a fully operated platform to users tosupport real-time robot vision, control and programmingexercises. The platform has a mobile robot to be controlledremotely by the developed hardware and software withoutusing any sensor except camera and optical tachometers.This makes the system distinct from the similar studies presentedin the literature.This paper is organized as follows. Section 2 describesthe structure of web-based real-time platform presentedin this work. Section 3 gives the design and implementationdetails of Web-SUN. In Section 4, some of the works canbe achieved on the platform were introduced. Finally,experimental results were presented and concluded in Section5.2. Proposed system (web-SUN) or platformGeneral structure of the proposed system or platform(Web-SUN) is demonstrated in Fig. 1. The system mainlyconsists of web portal and control center including mobilerobot vehicle, user and database management modules,support software, wireless access point, communicationcenter, administration, support libraries, control centerand portable PC were also parts of the platform. Web-SUN (Small Universal Navigator) was mainly designedto build up a multi-functional real-time web exercises.In general, the platform involves in integrating threemajor disciplines, namely, mechanical, electronic and softwareengineering to support online or real-time services fordesired applications. It needs to be emphasized that mostof the systems having hardware, software and mechanicswere developed by the authors. Web-SUN system havinga three-wheel-robot vehicle, a two-degrees-freedom cameramotion system and a web-based control center were used toachieve real-time experiments. A portable PC was mountedon the robot vehicle to support all processes achievedwithin the mobile platform. In order to support Web-SUN system and reduce the operation time during realtimeprocesses, various real-time applications with the helpof support library were developed in this work. All activitiesachieved within Web-SUN platform can be monitored,controlled and watched on-line by the users through thedesigned web platform.The hardware used in the platform was comprised of athree-wheel mobile robot system, a two-degrees-of-freedomcamera motion unit, a portable PC, various controllers andwireless communication modules. The software developedfor the platform covers the programming for microcomputer,control center and web interface. Details of thedesigned Web-SUN platform parts are given in the followingsection.2.1. Structures of mechanics and hardwareA three-wheel-robot vehicle, a two-degrees-freedomcamera motion system and control units designed andimplemented in this work were shown in Fig. 2. The portablePC supports movements, communication, on-line servicesand various controllers. The PC could not be seenin the figure as it was built in the robot body.The robot vehicle consists of microcontrollers, a camerasystem, a portable PC with Wi-Fi LAN adapter, motorsand motor drives used to carry out vehicle and cameramovements and speed sensors used to estimate the positionof it. As mentioned earlier, the robot is a three-wheel designationof which rear wheels are free to move. The frontwheel steers and drives the mobile robot. For the simplicityand the cost, the body of robot vehicle was constructedfrom PVC (polyvinylchloride) and polyethylene materials.Two microcontrollers (the slave and the master) wereemployed in hardware implementation. The slave microcontrollercontrols the camera system, the motors and thesensors and provides communication with master microcontrollervia I2C serial bus. The master microcomputermanages the vehicle motion control, the communicationwith portable PC and the slave microcontroller. The mastermicrocontroller was connected to the PC via RS232 port.In addition, four DC motors with gearbox, four opticaltachometers coupled to the DC motors, four H-bridgeinverters for DC motor drive and two LCDs were usedfor this implementation. The control center was designedto manage all activities of the robot vehicle by the userseasily.Details of the kinematics equations and drive systems ofWeb-SUN were given in Yilmaz (2005), Yilmaz et al.(2006a). Positions of Web-SUN were computed using thekinematics equations by the master microcontroller. PIDcontrollers were used to control the positions for vehicleand camera motion systems. The controllers were individuallyrun on master and slave microcontrollers.Actuations of the camera were implemented using twoDC motors. The motors turning 360_ horizontally (pan)and 270_ vertically (tilt) were selected. Motion comingfrom the first DC motor is transferred to the vehicle witha gear so that horizontal pan motion was provided. Themotion coming from the second DC motor tilts the robotvehicle vertically via a gear set. The DC motors were drivenwith PWM based H-Bridge DC motor drivers controlledby PIC16F877.Intel Centrino 1.6 GHz microprocessor, 512 MB RAMand 30 GB HDD and internal Wi-Fi LAN adapter wasused as a PC.2.2. Software implementationWeb-SUN platform serves many users through internetwith the help of developed software as shown in Fig. 3. Inorder to achieve the processes in Fig. 3, internet softwarefor browsing, server software for http, main program forcontrol center and its individual parts, robot vehicle andcamera control programs for PIC microcontrollers anddatabase programs for authentication, verification andstoring were developed for real-time web platform exercises.As can be seen from the figure, active and passiveusers facilitate from the platform according to the tasksand expectations. In the system, the active user operatesthe mobile robot through the web browser or manages allprocesses available on the web interface. The other (passive)users watch the operations implemented by the active user. All users connected to the platform can communicatewith each other by means of a messaging service and ashared working environment be configured.The programs developed in this study mainly consist ofthree parts incl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哈尔滨体育学院《博弈论及其应用》2023-2024学年第一学期期末试卷
- 四川省宜宾市翠屏区中学2025届九上数学期末达标测试试题含解析
- 甘肃省临洮县2024-2025学年数学七年级第一学期期末质量跟踪监视模拟试题含解析
- 二零二五年度反担保保证合同示范文本:体育赛事反担保
- 河北省石家庄外国语教育集团2024年九年级数学第一学期期末统考模拟试题含解析
- 二零二五年度车辆入股汽车改装服务公司合作协议
- 二零二五版房地产项目保密协议修改范文精简版
- 二零二五年度水利工程HSE施工安全协议
- 二零二五年度集成电路产业人才培训与引进合同
- 2025版生物医药领域博士专家劳动合同书
- 网络安全运维认证试卷含答案
- 2025年江苏盐城市射阳县城市照明服务有限公司聘考试笔试试题(含答案)
- 2025年团委工作总结-循“荔枝之道”而行走稳青春育人之路
- 消防装备维护保养课件教学
- 设备安全培训
- 2025至2030中国角膜塑形镜行业产业运行态势及投资规划深度研究报告
- 小学数学课堂教学实践与创新
- 2025年03月四川成都农业科技中心公开招聘笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 波峰焊作业指导书
- 武汉市市级预算单位银行账户和资金管理暂行办法
- 七年级期末考试数学质量分析
评论
0/150
提交评论