




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/ GA.cpp : Defines the entry point for the console application./*这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用 Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从, 目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为gadata.txt;系统产生的输出文件为galog.txt。输入的文件由几行组成:数目对应于变量数。且每一行提供次序对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 */#include #include #include /* Change any of these parameters to match your needs */ /请根据你的需要来修改以下参数#define POPSIZE 50 /* population size 种群大小*/ #define MAXGENS 1000 /* max. number of generations 最大基因个数*/ const int NVARS = 3; /* no. of problem variables 问题变量的个数*/ #define PXOVER 0.8 /* probability of crossover 杂交概率*/ #define PMUTATION 0.15 /* probability of mutation 变异概率*/ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. 当前基因个数*/ int cur_best; /* best individual 最优个体*/ FILE *galog; /* an output file 输出文件指针*/ struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/ double geneNVARS; /* a string of variables 变量*/ double fitness; /* GTs fitness 基因的适应度*/ double upperNVARS; /* GTs variables upper bound 基因变量的上界*/ double lowerNVARS; /* GTs variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/ double cfitness; /* cumulative fitness 积累适应度*/ ; struct genotype populationPOPSIZE+1; /* population 种群*/ struct genotype newpopulationPOPSIZE+1; /* new population; 新种群*/ /* replaces the old generation */ /取代旧的基因/* Declaration of procedures used by this genetic algorithm */ /以下是一些函数声明void initialize(void); double randval(double, double); void evaluate(void); void keep_the_best(void); void elitist(void); void select(void); void crossover(void); void Xover(int,int); void swap(double *, double *); void mutate(void); void report(void); /*/ /* Initialization function: Initializes the values of genes */ /* within the variables bounds. It also initializes (to zero) */ /* all fitness values for each member of the population. It */ /* reads upper and lower bounds of each variable from the */ /* input file gadata.txt. It randomly generates values */ /* between these bounds for each gene of each genotype in the */ /* population. The format of the input file gadata.txt is */ /* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound . */ /*/ void initialize(void) FILE *infile; int i, j; double lbound, ubound; if (infile = fopen(gadata.txt,r)=NULL) fprintf(galog,nCannot open input file!n); exit(1); /* initialize variables within the bounds */ /把输入文件的变量界限输入到基因结构体中for (i = 0; i NVARS; i+) fscanf(infile, %lf,&lbound); fscanf(infile, %lf,&ubound); for (j = 0; j POPSIZE; j+) populationj.fitness = 0; populationj.rfitness = 0; populationj.cfitness = 0; populationj.loweri = lbound; populationj.upperi= ubound; populationj.genei = randval(populationj.loweri, populationj.upperi); fclose(infile); /*/ /* Random value generator: Generates a value within bounds */ /*/ /随机数产生函数double randval(double low, double high) double val; val = (double)(rand()%1000)/1000.0)*(high - low) + low; return(val); /*/ /* Evaluation function: This takes a user defined function. */ /* Each time this is changed, the code has to be recompiled. */ /* The current function is: x12-x1*x2+x3 */ /*/ /评价函数,可以由用户自定义,该函数取得每个基因的适应度void evaluate(void) int mem; int i; double xNVARS+1; for (mem = 0; mem POPSIZE; mem+) for (i = 0; i NVARS; i+) xi+1 = populationmem.genei; populationmem.fitness = (x1*x1) - (x1*x2) + x3; /*/ /* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */ /*/ /保存每次遗传后的最佳基因void keep_the_best() int mem; int i; cur_best = 0; /* stores the index of the best individual */ /保存最佳个体的索引for (mem = 0; mem populationPOPSIZE.fitness) cur_best = mem; populationPOPSIZE.fitness = populationmem.fitness; /* once the best member in the population is found, copy the genes */ /一旦找到种群的最佳个体,就拷贝他的基因for (i = 0; i NVARS; i+) populationPOPSIZE.genei = populationcur_best.genei; /*/ /* Elitist function: The best member of the previous generation */ /* is stored as the last in the array. If the best member of */ /* the current generation is worse then the best member of the */ /* previous generation, the latter one would replace the worst */ /* member of the current population */ /*/ /搜寻杰出个体函数:找出最好和最坏的个体。/如果某代的最好个体比前一代的最好个体要坏,那么后者将会取代当前种群的最坏个体void elitist() int i; double best, worst; /* best and worst fitness values 最好和最坏个体的适应度值*/ int best_mem, worst_mem; /* indexes of the best and worst member 最好和最坏个体的索引*/ best = population0.fitness; worst = population0.fitness; for (i = 0; i populationi+1.fitness) if (populationi.fitness = best) best = populationi.fitness; best_mem = i; if (populationi+1.fitness = worst) worst = populationi+1.fitness; worst_mem = i + 1; else if (populationi.fitness = best) best = populationi+1.fitness; best_mem = i + 1; /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */ /如果新种群中的最好个体比前一代的最好个体要强的话,那么就把新种群的最好个体拷贝出来。/否则就用前一代的最好个体取代这次的最坏个体if (best = populationPOPSIZE.fitness) for (i = 0; i NVARS; i+) populationPOPSIZE.genei = populationbest_mem.genei; populationPOPSIZE.fitness = populationbest_mem.fitness; else for (i = 0; i NVARS; i+) populationworst_mem.genei = populationPOPSIZE.genei; populationworst_mem.fitness = populationPOPSIZE.fitness; /*/ /* Selection function: Standard proportional selection for */ /* maximization problems incorporating elitist model - makes */ /* sure that the best member survives */ /*/ /选择函数:用于最大化合并杰出模型的标准比例选择,保证最优秀的个体得以生存void select(void) int mem, j, i; double sum = 0; double p; /* find total fitness of the population */ /找出种群的适应度之和for (mem = 0; mem POPSIZE; mem+) sum += populationmem.fitness; /* calculate relative fitness */ /计算相对适应度for (mem = 0; mem POPSIZE; mem+) populationmem.rfitness = populationmem.fitness/sum; population0.cfitness = population0.rfitness; /* calculate cumulative fitness */ /计算累加适应度for (mem = 1; mem POPSIZE; mem+) populationmem.cfitness = populationmem-1.cfitness + populationmem.rfitness; /* finally select survivors using cumulative fitness. */ /用累加适应度作出选择for (i = 0; i POPSIZE; i+) p = rand()%1000/1000.0; if (p population0.cfitness) newpopulationi = population0; else for (j = 0; j = populationj.cfitness & ppopulationj+1.cfitness) newpopulationi = populationj+1; /* once a new population is created, copy it back */ /当一个新种群建立的时候,将其拷贝回去for (i = 0; i POPSIZE; i+) populationi = newpopulationi; /*/ /* Crossover selection: selects two parents that take part in */ /* the crossover. Implements a single point crossover */ /*/ /杂交函数:选择两个个体来杂交,这里用单点杂交void crossover(void) int mem, one; int first = 0; /* count of the number of members chosen */ double x; for (mem = 0; mem POPSIZE; +mem) x = rand()%1000/1000.0; if (x 1) if(NVARS = 2) point = 1; else point = (rand() % (NVARS - 1) + 1; for (i = 0; i point; i+) swap(&populationone.genei, &populationtwo.genei); /*/ /* Swap: A swap procedure that helps in swapping 2 variables */ /*/ void swap(double *x, double *y) double temp; temp = *x; *x = *y; *y = temp; /*/ /* Mutation: Random uniform mutation. A variable selected for */ /* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /*/ /变异函数:被该函数选中后会使得某一变量被一个随机的值所取代void mutate(void) int i, j; double lbound, hbound; double x; for (i = 0; i POPSIZE; i+) for (j = 0; j NVARS; j+) x = rand()%1000/1000.0; if (x PMUTATION) /* find the bounds on the variable to be mutated 确定*/ lbound = populationi.lowerj; hbound = populationi.upperj; populationi.genej = randval(lbound, hbound); /*/ /* Report function: Reports progress of the simulation. Data */ /* dumped into the output file are separated by commas */ /*/ void report(void) int i; double best_val; /* best population fitness 最佳种群适应度*/ double avg; /* avg population fitness 平均种群适应度*/ double stddev; /* std. deviation of population fitness */ double sum_square; /* sum of square for std. calc 各个个体平方之和*/ double square_sum; /* square of sum for std. calc 平均值的平方乘个数*/ double sum; /* total population fitness 所有种群适应度之和*/ sum = 0.0; sum_square = 0.0; for (i = 0; i POPSIZE; i+) sum += populationi.fitness; sum_square += populationi.fitness * populationi.fitness; avg = sum/(double)POPSIZE; square_sum = avg * avg * POPSIZE; stddev = sqrt(sum_square
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年会策划活动方案模板图(3篇)
- 嘉兴多人团建活动方案策划(3篇)
- 泸州水下施工方案(3篇)
- 中职对口考试题库及答案
- 艺术鉴赏考试题库及答案
- 小学文明用语题目及答案
- 小区绿化及环保设施建设合同
- 看假文盲有感700字15篇
- 元宵节作文500字左右20258篇范文
- 农村环境保护和可持续发展的合作合同
- 2025-2030年中国动力耳鼻喉科手术器械行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国建筑防腐行业发展趋势与前景分析报告
- 2025年重庆市中考化学试卷真题(含标准答案)
- 社会化服务项目方案投标文件技术方案
- 电石中控岗位操作规程
- 造型基础-全套教案课件
- 幕墙密封胶相容性检测
- 如何清洁头皮可促进头发生长
- 班主任安全管理培训
- 药品生产企业药品安全信用评价指标及评分标准
- 台州市水处理发展有限公司化工废水处理工程项目环评报告
评论
0/150
提交评论