


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
241.2垂直于弦的直径1圆的对称性2通过圆的轴对称性质的学习,理解垂径定理及其推论3能运用垂径定理及其推论进行计算和证明重点:垂径定理及其推论难点:探索并证明垂径定理一、自学指导(10分钟)自学:研读课本P8183内容,并完成下列问题1圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,它也是中心对称图形,对称中心为圆心2垂直于弦的直径平分弦,并且平分弦所对的两条弧,即一条直线如果满足:AB经过圆心O且与圆交于A,B两点;ABCD交CD于E,那么可以推出:CEDE;.3平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧点拨精讲:(1)画图说明这里被平分的弦为什么不能是直径(2)实际上,当一条直线满足过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,这五个条件中的任何两个,就可推出另外三个二、自学检测:学生自主完成,小组内展示,点评,教师巡视(6分钟)1在O中,直径为10 cm,圆心O到AB的距离为3 cm,则弦AB的长为 _8_cm_2在O中,直径为10 cm,弦AB的长为8 cm,则圆心O到AB的距离为_3_cm_点拨精讲:圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个3O的半径OA5 cm,弦AB8 cm,点C是AB的中点,则OC的长为_3_cm_点拨精讲:已知弦的中点,连接圆心和中点构造垂线是常用的辅助线4某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为多少米?(8米)点拨精讲:圆中已知半径、弦长、弦心距或弓形高四者中的任何两个,即可求出另一个一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果(6分钟)1AB是O的直径,弦CDAB,E为垂足,若AE9,BE1,求CD的长解:6.点拨精讲:常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形2O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为_3_,最大值为_5_点拨精讲:当OM与AB垂直时,OM最小(为什么),M在A(或B)处时OM最大3如图,线段AB与O交于C,D两点,且OAOB.求证:ACBD.证明:作OEAB于E.则CEDE.OAOB,OEAB,AEBE,AECEBEDE.即ACBD.点拨精讲:过圆心作垂线是圆中常用辅助线二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路(10分钟)1在直径是20 cm的O中,AOB的度数是60,那么弦AB的弦心距是_5_cm.点拨精讲:这里利用60角构造等边三角形,从而得出弦长2弓形的弦长为6 cm,弓形的高为2 cm,则这个弓形所在的圆的半径为_cm.3如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点求证:ACBD.证明:过点O作OEAB于点E.则AEBE,CEDE.AECEBEDE.即ACBD.点拨精讲:过圆心作垂径4已知O的直径是50 cm,O的两条平行弦AB40 cm,CD48 cm,求弦AB与CD之间的距离解:过点O作直线OEAB于点E,直线OE与CD交于点F.由ABCD,则OFCD.(1)当AB,CD在点O两侧时,如图.连接AO,CO,则AOCO25 cm,AE20 cm,CF24 cm.由勾股定理知OE15 cm,OF7 cm.EFOEOF22 (cm)即AB与CD之间距离为22 cm.(2)当AB,CD在点O同侧时,如图,连接AO,CO.则AOCO25 cm,AE20 cm,CF24 cm.由勾股定理知OE15 cm,OF7 cm.EFOEOF8 (cm)即AB与CD之间距离为8 cm.由(1)(2)知AB与CD之间的距离为22 cm或8 cm.点拨精讲:分类讨论,AB,CD在点O两侧,AB,CD在点O同侧学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度集体土地征收补偿合同样本
- 二零二五版广告车租赁与地方产业宣传合作协议
- 二零二五版北碚区集资房买卖合同书(附装修)
- 污水处理厂污泥处理与资源化方案
- 2025版河南省房屋租赁合同范本(含租赁合同解除通知)
- 二零二五年餐饮连锁短期派遣厨师合同
- 二零二五年度敬老院土地承包与养老产业合作运营合同
- 二零二五年度建筑工人健康体检服务合同书
- 工业园污水处理厂技术培训与管理方案
- 二零二五版地质勘探技术服务与矿产资源开发合同
- 肾内科医生进修总结汇报
- 小学数学跨学科学习案例
- 无人机驾照考证知识题
- 肺栓塞课件完整版本
- 心电监护的并发症及预防
- 风电场知识培训课件下载
- 生态经济学-杨建州-课件专题
- 《民用无人机作业气象条件等级 植保》
- 香港借住合同范例
- 安全伴我行-大学生安全教育知到智慧树章节测试课后答案2024年秋哈尔滨工程大学
- 《采购部相关培训》课件
评论
0/150
提交评论