列一元一次方程解应用题方法归类.doc_第1页
列一元一次方程解应用题方法归类.doc_第2页
列一元一次方程解应用题方法归类.doc_第3页
列一元一次方程解应用题方法归类.doc_第4页
列一元一次方程解应用题方法归类.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

百年教育学校 初一数学复习资料(乔怡瑞)3列一元一次方程解应用题:用一元一次方程解答实际问题,是中考考查的热点,解决这类问题一般要遵循如下步骤:审题:认真仔细的阅读题目,抽取有用信息,从而搞清其中的数量关系.在这一步,注意不要被一些无用的信息所迷惑,因为并不是每一个数据都是有用的.确定相等关系:应用题中往往有几个相等关系,要通过认真研究数量关系,从而找出主要的数量相等关系.这是列方程解应用题最关键的一步,在确定主要的数量相等关系之前,切不要着急设未知数去列方程.设出未知数,列出方程:设未知数存在直接和间接设的问题,到底采用哪种设法,要因题而异.总的原则是简单、明确,有利于容易的表示题目中的有关数量,有利于列方程.解方程:合理运用解方程的步骤解对方程.检验、写出答案:检验所求出的未知数的值是否符合实际意义,检验之后写出答案.1、行程问题:(1)路程= (2)相向而行,相遇时,快行的路程+慢行的路程= 同向而追及时, -慢行的距离=距离差1. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 2.一队学生去学校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?3.某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,问学生队伍的长是多少米(二)行船问题:公式:顺水航速= ,逆水航速= 。1、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。(三)工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。1. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 2.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,求该班组要完成的零件任务为多少?(四)储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。 利息=本金利率期数 本息和=本金+利息 利息税=利息税率1. 小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?2.某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)(五) 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 商品利润率利润/进价100% 商品的销售利润(销售价成本价)销售量 商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售1. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?2.某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。问这种商品每个的进价、定价各是多少元?3. 某人在广州以每件15元的价格购进某种商品10件,后来又从深圳以每件12.5元的价格购进同种商品40件。如果商店销售这些商品时要获得12的利润,那么这种商品每件的销售价应该是多少元?4、某商店有两个进价不同的计算器都卖了64元,其中一个盈利60,另一个亏本20,在这次买卖中,这家商店盈还是亏?5、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。则进价为每件多少元?(六) 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。 (2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。1、 某通信公司今年员工人均收入比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?2. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?(七). 劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变例.1.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?2.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?3.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。(八)分配问题:利用总量不变1.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?2、一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?3.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。(九)增长率问题:增长率=增长量/原始量100/100 形式:a(1+x)=b1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是 。3.A、B两个超市去年销售额共150万元,今年共170万元。A超市销售额今年比去年增加15%;B超市今年比去年增加10%,求A、B两个超市今年销售额各多少? 4.水结成冰体积增加,冰化成水体积减少( ) A B C D5、某村去年种植的油菜籽亩产量达150千克,含油率为40。今年改种新选育的油菜籽后亩产量提高了30千克,含油率提高了10百分点。今年与去年相比,油菜的种植面积减少了40亩,而村榨油厂用本村所产油菜籽的产油量提高了20(1)求今年油菜的种植面积。设今年油菜的种植面积是x 亩。完成下表后再列方程解答。亩产量(千克/亩)种植面积(亩)油菜籽总产量(千克)含油率产油量(千克)去年 150 40今年 x(2)已知油菜种植成本为200元/亩,菜油收购价为6元/千克。试比较这个村去今两年种植油菜的纯收入(十)配套问题: 利用总数间的倍分关系1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)2. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? (十一)数字问题(1)一般可设个位数字为a,十位数字为b,百位数字为c 十位数可表示为10b+a, 百位数可表示为100c+10b+a2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数2.有一个三位数,十位数字是个位数字2倍,百位数字比个位数字大3,如果把十位上的数字与百位上的数字对调,新的三位数与原来三位数和为1246,求原来的三位数。 (十二)年龄问题:例:甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是_.1.小明今年13岁,他爸爸今年39岁,几年后小明的年龄将是爸爸年龄的一半?2.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时.一天晚上停电,小芳同时点燃了这两支蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问停电多少分钟? (十三)方案设计与成本分析1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。你认为哪种方案获利最多?为什么终点起点 北京上海广州400800武汉3005002.在“万众一心”抗非典的战役中,广州、武汉有两厂能生产同型号的“红外摄象仪”,它们计划调出若干台支援北京和上海,已知广州可调出10台,武汉可调出4台,现在北京需要8台,上海需要6台,每台运费如下表所示,现在有一种调运方案,需要的总运费是7600元,请你算一算这种调运方案中应从广州调出多少台到北京? 3.国家规定个人发表文章或出书获得稿费的纳税计算方法是:(1)稿费不高于800元的,不纳税;(2)稿费高于800元又不高于4000元的应交超过800元那一部分稿费的14% 的税;(3)稿费高于4000元的应交全部稿费的11% 的税。王老师曾获得一笔稿费,并交税280元,算一算王老师这笔稿费是 元。某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400(180%)+30=110(元)购买商品得到的优惠率=购买商品获得的优惠额商品的标价试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?5.规定:公民月工资,薪水所得不超过2000元不必纳税,超过2000元的部分为应纳税款,税款按下表累加计算。不超过500元,5% 超过500元至2000元部分,10% 超过2000至5000元部分,15% (1)某人某月工资、薪水所得4450元,那么他应纳税多少元? (2)某人本月纳税82.05元,请你帮忙确定一下他的本月的工资收入是多少元?设学生赶到队头的时间为t1,队列长为S,学生和列队的速度都已知,则12t1-8t1=4t1=S,所以t1=S/4,设学生赶到队尾的时间为t2,则12t2+8t2=20t2=S,所以t2=S/20,因为从队尾出发赶到排头又回到队尾共用7.2分,则t1+t2=S/4+S/20=3S/10=7.2/60(注意此时要把分换算为小时,因为速度的单位是千米每时),解得S=0.4km粗蜡烛每小时烧12 细蜡烛每小时烧11 设停电X小时 则112X2(111X) 解得X2/3 所以停电时间为23个小时(1)从左往右依次填:180;x+40;150(x+40);180x;50%;60x+2400;90x;列方程为:1.215040%(x+40)=(150+30)(40%+10%)x解得:x=160;(2)去年种植成本为:200(x+40)=200(160+40)=40000(元)去年售油收入为:150(160+40)406=72000(元)去年油菜种植纯收入为:72000-40000=32000(元)今年种植成本为:200160=32000(元)今年售油收入为:720001.2=86400(元)今年油菜种植纯收入为:86400-32000=54400(元)答:今年与去年相比,种植成本较少了,而纯收入增加了。13.1.解:方案一:利润W1=630000元,方案二:利润W2=725000元,方案三:设15天内精加工蔬菜t,则粗加工蔬菜为(140 )t,根据题意,得,解方程得=60,此时总利润为W3=8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论