




已阅读5页,还剩58页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17 1勾股定理第二课时 复习巩固 梳理知识 问题1 请说一说勾股定理的具体内容 在Rt ABC中 C 90 AB c AC b BC a a2 b2 c2 已知a b 则c 已知a c 则b 已知c b 则a 问题2 勾股定理应用的条件有哪些 有两种特殊的直角三角形 已知一边可以求另外两边长 a 5cm时求b c c 6cm时求b a 一个门框尺寸如下图所示 若有一块长3米 宽0 8米的薄木板 问怎样从门框通过 若薄木板长3米 宽1 5米呢 若薄木板长3米 宽2 2米呢 为什么 1m 2m 木板的宽2 2米大于1米 横着不能从门框通过 木板的宽2 2米大于2米 竖着也不能从门框通过 只能试试斜着能否通过 对角线AC的长最大 因此需要求出AC的长 怎样求呢 一 勾股定理解决门框是否通过问题 1 一辆装满货物高为1 8米 宽1 5米的卡车要通过一个直径为5米的半圆形双向行驶隧道 它能顺利通过吗 O A 1 5m C D 分析 隧道宽度是足够的 所以卡车能否通过 只要看卡车位于隧道中线一侧时 其右侧高度是否小于 因为2 1 8 高度上有0 2米的余量 所以卡车能通过隧道 CD 连接OD 得到Rt OCD 如何求CD呢 解 在Rt OCD中 由勾股定理得 2 5m 知识扩展练一练 一辆装满货物的卡车 其外形高2 5米 宽1 6米 要开进厂门形状如下图的某工厂 问这辆卡车能否通过该工厂的厂门 分析 1 厂门的宽度足够 所以卡车能否通过 只要看卡车位于厂门正中间时 其高度是否小于 要求CH就必须先求 而要求出CD我们可以建立Rt 2 在Rt OCD中 直角边OD 斜边OC CH CD OCD 1米 0 8米 CH 0 6 2 3 2 9 2 5 因此高度上有0 4米的余量 所以卡车能通过厂门 0 8m 1m 知识扩展练一练 有一个边长为50dm的正方形洞口 想用一个圆盖去盖住这个洞口 圆的直径至少多长 结果保留整数 50dm A B C D 解 在Rt ABC中 B 90 AC BC 50 由勾股定理可知 变式练习 如图 池塘边有两点A B 点C是与BA方向成直角的AC方向上的一点 测得CB 60m AC 20m 你能求出A B两点间的距离吗 结果保留整数 探究新知 一个2 5m长的梯子AB斜靠在一竖直的墙AC上 这时AC的距离为2 4m 如果梯子顶端A沿墙下滑0 4m 那么梯子底端B也外移0 4m吗 D E 解 在Rt ABC中 ACB 90 AC2 BC2 AB22 42 BC2 2 52 BC 0 7m 由题意得 DE AB 2 5mDC AC AD 2 4 0 4 2m 在Rt DCE中 BE 1 5 0 7 0 8m 0 4m答 梯子底端B不是外移0 4m DCE 90 DC2 CE2 DE222 BC2 2 52 CE 1 5m 二 勾股定理解决梯子移动问题 如图 一个3米长的梯子AB 斜着靠在竖直的墙AO上 这时AO的距离为2 5米 求梯子的底端B距墙角O多少米 如果梯子的顶端A沿墙角下滑0 5米至C 请同学们 猜一猜 底端也将滑动0 5米吗 算一算 底端滑动的距离近似值是多少 结果保留两位小数 变式练习 在我国古代数学著作 九章算术 中记载了一道有趣的问题这个问题意思是 有一个水池 水面是一个边长为10尺的正方形 在水池的中央有一根芦苇 它高出水面1尺 如果把这根芦苇拉向岸边 它的顶端恰好到达岸边的水面 问这个水池的深度和这根芦苇的长度各是多少 D A B C 解 设水池的深度AC为X米 则芦苇高AD为 X 1 米 根据题意得 BC2 AC2 AB2 52 X2 X 1 2 25 X2 X2 2X 1 X 12 X 1 12 1 13 米 答 水池的深度为12米 芦苇高为13米 三 勾股定理解决芦苇倾斜问题 荷花问题平平湖水清可鉴 面上半尺生红莲 出泥不染亭亭立 忽被强风吹一边 渔人观看忙向前 花离原位二尺远 能算诸君请解题 湖水如何知深浅 0 5 x x 0 5 2 答 湖水深3 75尺 探究新知 可用勾股定理建立方程 实数 数轴上的点 一一对应 说出下列数轴上各字母所表示的实数 点C表示 点D表示 点B表示 点A表示 四 利用勾股定理在数轴上表示无理数 我们知道数轴上的点有的表示有理数 有的表示无理数 你能在数轴上表示出的点吗 0 1 2 3 4 步骤 l A B C 1 在数轴上找到点A 使OA 3 2 作直线L OA 在L上取一点B 使AB 2 3 以原点O为圆心 以OB为半径作弧 弧与数轴交于C点 则点C即为表示的点 你能在数轴上画出表示的点和的点吗 点C即为表示的点 你能在数轴上画出表示的点吗 探究1 0 1 2 3 4 l A B C 你能在数轴上画出表示的点和的点吗 0 1 2 3 4 A B C 你能在数轴上表示出的点吗 探究 0 在数学中也有这样一幅美丽的 海螺型 图案 由此可知 利用勾股定理 可以作出长为 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 第七届国际数学教育大会的会徽 1 数学海螺图 的线段 1 丹东 中考 已知 ABC是边长为1的等腰直角三角形 以Rt ABC的斜边AC为直角边 画第二个等腰Rt ACD 再以Rt ACD的斜边AD为直角边 画第三个等腰Rt ADE 依此类推 第n个等腰直角三角形的斜边长是 2 如图为4 4的正方形网格 以格点与点A为端点 你能画出几条边长为的线段 3 如图 D 2 1 以OD为一边画等腰三角形 并且使另一个顶点在x轴上 这样的等腰三角形能画多少个 写出落在x轴上的顶点坐标 x y 在 ABC中 D为BC边上的高 已知AB 15 BC 30 AC 20 求BD的长 五 利用勾股定理建立方程 方程思想 两个直角三角形中 如果有一条公共边 可利用勾股定理建立方程求解 变式训练 ABC中 AB 10 AC 17 BC边上的高线AD 8 求线段BC的长和 ABC的面积 8 6 15 6 21 或9 S ABC 84或36 当题中没有给出图形时 应考虑图形的形状是否确定 如果不确定 就需要分类讨论 如图 铁路上A B两点相距25km C D为两村庄 DA AB于A CB AB于B 已知DA 15km CB 10km 现在要在铁路AB上建一个土特产品收购站E 使得C D两村到E站的距离相等 则E站应建在离A站多少km处 x 25 x 解 设AE xkm 根据勾股定理 得AD2 AE2 DE2BC2 BE2 CE2 又 DE CE AD2 AE2 BC2 BE2 即 152 x2 102 25 x 2 答 E站应建在离A站10km处 X 10 则BE 25 x km 15 10 五 利用勾股定理建立方程 勾股定理中折叠问题 折叠和轴对称密不可分 利用折叠前后图形完全重合 全等 找到对应边 对应角相等便可顺利解决折叠问题 规律 矩形ABCD如图折叠 使点D落在BC边上F处 已知AB 8 BC 10 求EF的长 A B C D F E 解 设DE为X X 则CE为 8 X 由题意可知 EF DE X X AF AD 10 10 10 8 在Rt ABF中AB2 BF2 AF2 82 BF2 102 BF 6 CF BC BF 10 6 4 6 4 在Rt EFC中CE2 CF2 EF2 8 X 2 42 X2 解得X 5即EF 5 六 折叠问题 8 X 2 试求下列图形中阴影部分的面积 1 阴影部分是正方形 25cm 2 阴影部分是半圆 8 cm 七 图形中阴影部分的面积问题 如图 分别以Rt ABC三边为直径向外作三个半圆 其面积分别用S1 S2 S3表示 猜想S1 S2 S3之间有什么关系 请加以说明 知识扩展练一练 如图 分别以直角三角形ABC的三边为边向外作正方形 然后分别以三个正方形的中心为圆心 正方形边长的一半为半径作圆 求三个圆的面积之间的关系 知识扩展练一练 如图 已知直角三角形ABC的三边分别为6 8 10 分别以它的三边为直径向上作三个半圆 求图中阴影部分的面积 知识扩展练一练 乙 甲 八 勾股定理应用中 航海问题 甲轮船以 海里 时的速度从港口向东南方向航 行 乙船同时以 0海里 时速度向东北方向航行 求它们离开港口 小时后相距多远 北 南 西 东 港口 A B 甲 乙 日常生活中常见的垂直关系有哪些 九 利用勾股定理解决最短路径问题 知识回顾 1 两点之间 最短 2 一个圆柱体的侧面展开图是 它的一边长是 它的另一边长是 线段 长方形 圆柱的高 底面圆的周长 请观察讨论 交流 动手实践 展平 只需展开包含相关点的面 可能存在多种展开法 定点 确定相关点的位置 连线 连接相关点 构建直角三角形 计算 利用两点之间线段最短 及勾股定理求解 我怎么走会最近呢 例1 如图所示 圆柱体的底面直径为6cm 高AC为12cm 一只蚂蚁从A点出发 沿着圆柱的侧面爬行到点B 试求出爬行的最短路程 取3 合作探究 C D 议一议 分组讨论 合作交流 动手实践 请观察讨论 交流 动手实践 两点之间线段最短 为什么这样走最短 B C 解 如上图 在Rt ABC中 BC r 9cm AB 15 cm 勾股定理 答 最短路程约为15cm C 高12cm B A 长18cm 的值取3 AB2 92 122 81 144 225 AB 15 cm 答 蚂蚁爬行的最短路程是15cm 152 解 将圆柱如图侧面展开 在Rt ABC中 根据勾股定理 C 几何体的表面路径的最短的问题 一般将立体图形展开为平面图形来计算 展平 只需展开包含相关点的面 可能存在多种展开法 定点 确定相关点的位置 连线 连接相关点 构建直角三角形 计算 利用两点之间线段最短 及勾股定理求解 展开思想 求立体图形中最短路程问题的 四步法 规律 最短路程问题 例1 如图 一圆柱高8cm 底面半径2cm 一只蚂蚁从点A爬到点B处吃食 要爬行的最短路程 取3 是 A 20cmB 10cmC 14cmD 无法确定 B B 8 O A 2 蛋糕 A C B 周长的一半 试一试 开学了 小华的妈妈为她准备了一把长为85cm的雨伞和一个行李箱 行李箱长为40cm 宽为30cm 高为70cm 问能否把雨伞放进这个行李箱中 链接生活 学以致用 x X2 302 402 50 AB2 602 X2 AB 米 做一做 小明要外出旅游 他所带的行李箱如图 长40cm 宽30cm 高60cm 请问 一把70cm长的雨伞能否装进这个行李箱 解 如图 由题意可知 ADC和 ABC都是直角三角形 如图 正四棱柱的底面边长为5cm 侧棱长为8cm 一只蚂蚁欲从正四棱柱的底面上的点A沿棱柱侧面到点C1处吃食物 那么它需要爬行的最短路径是多少 解 如下图 将四棱柱的侧面展开 连结AC1 AC 10cm CC1 8cm 已知 与上题的区别 如图是一个长8m 宽6m 高5m的仓库 在其内壁的A处 长的四等分点 处有一只壁虎 B 宽的三等分 处有一只蚊子 则壁虎抓到蚊子的最短距离的平方为m2 8 6 5 8 6 5 6 4 6 4 如图是一个长8m 宽6m 高5m的仓库 在其内壁的A处 长的四等分点 处有一只壁虎 B 宽的三等分 处有一只蚊子 则壁虎抓到蚊子的最短距离的平方为m2 8 6 5 8 5 5 6 6 4 如图 长方体的长 宽 高分别为8 4 2 现有一小虫从顶点A出发 沿长方体侧面到达顶点C 小虫走的路程最短为多少厘米 A C C1 B1 C2 B2 8 4 2 12 2 2 B3 C3 试一试 展平 只需展开包含相关点的面 可能存在多种展开法 定点 确定相关点的位置 连线 连接相关点 构建直角三角形 计算 利用两点之间线段最短 及勾股定理求解 如图是一个三级台阶 它的每一级的长宽和高分别为20dm 3dm 2dm A和B是这个台阶两个相对的端点 A点有一只蚂蚁 想到B点去吃可口的食物 则蚂蚁沿着台阶面爬到B点最短路程是多少 3 2 3 2 3 AB2 AC2 BC2 625 AB 25 应用勾股定理解决楼梯上铺地毯问题 展平 只需展开包含相关点的面 可能存在多种展开法 定点 确定相关点的位置 连线 连接相关点 构建直角三角形 计算 利用两点之间线段最短 及勾股定理求解 4 如图 是一个三级台阶 它的每一级的长 宽和高分别等于55cm 10cm和6cm A和B是这个台阶的两个相对的端点 A点上有一只蚂蚁 想到B点去吃可口的食物 请你想一想 这只蚂蚁从A点出发 沿着台阶面爬到B点 最短线路是多少 A B 十 勾股定理解决楼梯上铺地毯问题 4 如图 是一个三级台阶 它的每一级的长 宽和高分别等于55cm 10cm和6cm A和B是这个台阶的两个相对的端点 A点上有一只蚂蚁 想到B点去吃可口的食物 请你想一想 这只蚂蚁从A点出发 沿着台阶面爬到B点 最短线路是多少 A B 试一试 展平 只需展开包含相关点的面 可能存在多种展开法 定点 确定相关点的位置 连线 连接相关点 构建直角三角形 计算 利用两点之间线段最短 及勾股定理求解 4 如图 是一个三级台阶 它的每一级的长 宽和高分别等于55cm 10cm和6cm A和B是这个台阶的两个相对的端点 A点上有一只蚂蚁 想到B点去吃可口的食物 请你想一想 这只蚂蚁从A点出发 沿着台阶面爬到B点 最短线路是多少 A B 展平 只需展开包含相关点的面 可能存在多种展开法 定点 确定相关点的位置 连线 连接相关点 构建直角三角形 计算 利用两点之间线段最短 及勾股定理求解 4 如图 是一个三级台阶 它的每一级的长 宽和高分别等于55cm 10cm和6cm A和B是这个台阶的两个相对的端点 A点上有一只蚂蚁 想到B点去吃可口的食物 请你想一想 这只蚂蚁从A点出发 沿着台阶面爬到B点 最短线路是多少 A B 55 10 6 解 C 如图 将台阶展开 AC 10 6 3 48 BC 55 三角形ABC为直角三角形 AB 答 最短路线是73cm 3 如图 边长为1的正方体中 一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是 A 3 B C 2 D 1 分析 由于蚂蚁是沿正方体的外表面爬行的 故需把正方体展开成平面图形 如图 B 拔高练习 2 如图 牧童在A处放牛 其家在B处 A B到河岸的距离分别为AC BD 且AC 3 BD 5 CD 6 若牧童从A处将牛牵到河边饮水后再回家 试问在何处饮水 所走路程最短 最短路程是多少 M A 模型2 轴对称 方法总结数学来源于生活 又服务与生活 在解决实际问题时 首先要画出适当的示意图 将实际问题抽象为数学问题 并构建直角三角形模型 再运用勾股定理解决实际问题 立体图形中路线最短的问题 往往是把立体图形展开 得到平面图形 根据 两点之间 线段最短 确定行走路线 再根据勾股定理计算出最短距离 应用勾股定理解决实际问题的一般思路 知识扩展练一练 利用勾股定理作出长为的线段 1 1 用同样的方法 你能否在数轴上画出表示 提示 利用上一个直角三角形的斜边作为下一个直角三角形的一条直角边 在直线L上依次摆放着七个正方形 如图 已知斜放置的三个正方形的面积分别是1 2 3 正放置的四个正方形的面积依次是S1 S2 S3 S4 求S1 S2 S3 S4 知识扩展练一练 2012中考 请阅读下列材料 问题 现有5个边长为1的正方形 排列形式如图1 请把它们分割后拼接成一个新的正方形 要求 在图 中画出分割线并在正方形网格图中用实线画出拼接成的新正方形 图中每个小正方形的边长均为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育活动策划与赞助协议条款
- 2025内蒙古中电储能技术有限公司招聘备考考试试题及答案解析
- 园林管理处草花采购项目协议
- 共青城市2025年面向社会公开招聘幼儿园编外合同制教师(第二批)【25人】备考考试题库附答案解析
- 2025浙江台州市三门县国有企业招聘33人考试模拟试题及答案解析
- 食品安全演讲稿(13篇)
- 我与地坛读后感资料15篇
- 安全环保消防职业卫生培训考核试题含答案
- 资产打包处置管理办法
- 资产运营部管理办法
- 《绿色建筑概论》整套教学课件
- 常用急救药品的剂量与用法课件
- 《高级计量经济学》-上课讲义课件
- 塔吊基础-专项施工方案
- 《工贸行业重大安全生产事故隐患判定标准》解读课件
- 《农产品质量安全》系列讲座(第一讲-农产品质量及安全)课件
- 第二届中国管理培训生项目现状与发展调研报告
- 托业考试Toeic考题
- GB∕T 10429-2021 单级向心涡轮液力变矩器 型式和基本参数
- 电信市场营销试题库
- 资产评估质量保证措施
评论
0/150
提交评论