


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品对函数极限概念的理解函数极限概念,不易理解。由于极限概念具有高度的抽象性,因此,令人很难快速正确理解和掌握极限数学语言的真正内涵,以致于学完了极限,极限的意识还很薄弱。因此,要抓住理解的关键,我们体会,宜抓住以下三点:(一) 将“任意近处”的描绘性语言,转化为可进行量化比较的准确表达考察数集X=x,若在点x0的任意近处包含有X中异于x0的x的值,则点x0称为这数集的聚点。为着要更准确地表达这定义,我们引入点x0的邻域的概念:以点x0为中心的开区间(x0-,x0+)称为点x0的邻域。下边我们将聚点做可进行量化比较的准确表达:若在点x0的任一邻域内包含X中异于x0的x的值,则x0是数集X的聚点。关于“任一邻域”,=1cm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;=1mm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;=1nm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;,点x0的邻域可以无穷小。因此,“任一邻域”是一个无穷集。对聚点x0本身来说,可以属于X,或不属于X。也就是说x0在X上可以有定义或无定义。x0在X上无定义时,它的邻域也存在,叫做空心领域。(二) 注意函数f(x)在x接近于x0时的性态。设在区域X内给定函数f(x),且x0是X的聚点。这函数f(x)在x接近于x0时的性态是值得注意的。相对于自变量x,通过法则f,得到f(x),若出现了f(x)无限趋近于数A的性态,或者叫做f(x)与数A的差距无限小的性态,则可类似于x0的邻域,把看作A的邻域,而把这种性态更准确地表达为:f(x)- A0,而后求那个能保证成立的。即的几何空间受的几何空间的约束。既然f(x)无限趋近于数A的性态,可更准确地表达为:f(x)- A(是任一大于零的数),那么,使f(x)- A(是任一大于零的数)成立的应是什么样呢?也就是如何依赖f(x)- A求呢?具体过程如下:将f(x)- A变形:f(x)- A=Mx-x0,其中M是一个与x无关的常量。再取=M,则当0x-x0时,有0x-x0M,整理为0Mx-x0,从而推出f(x)- A=Mx-x0,也就是当0x-x0时,保证了f(x)- A0能求出0,只须x-x0能使f(x)- A (式中的x取自X内且异于x0)成立,则称当x趋向于x0时(或在x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年药士试题及答案
- 2024-2025学年江苏省淮安市淮安区苏教版三年级下册期末考试数学试卷(含答案)
- 面试难忘的题目及答案
- 会泽进城考试试题及答案
- 抗台安全培训课件
- 旅行社运营实务(第二版)习题及答案 项目一习题
- 扫地车安全培训内容记录课件
- 2025年唐山协警考试试题及答案
- 2025年营房工作考试题目及答案
- 2025年心脏内科考试题及答案
- 消防安全检查记录表(完整详细版)1
- 露天矿风险告知卡
- winmodv工厂可接受性测试、虚拟调试过程控制实时仿真
- 消费者行为学第01章导论
- 教学课件 金属学与热处理-崔忠圻
- 部编版二年级语文上册全册教案及反思
- 服装色彩设计(PPT57页)课件
- 北师大版五年级数学上册全册教案含反思
- 西门子燃气轮机技术介绍开
- 阅兵英语课件
- F8型空气分配阀及其电空制动机
评论
0/150
提交评论