




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性教学设计湖北省荆州中学 张静一、教学内容解析本节课内容是普通高中课程标准实验教科书数学人教A版必修1第一章集合与函数概念1.3函数的基本性质中第1.3.1节单调性与最大(小)值的第一课时,本节教学内容为函数的单调性函数的单调性是学生在了解函数概念后学习的函数的第一个性质函数单调性的概念是研究具体函数单调性的理论依据,在研究函数的值域、最大值、最小值等性质中有重要应用,因而函数单调性概念是中学数学中最重要的概念之一在研究单调性过程中,经历观察图象,描述函数图象特征;结合图象,用自然语言描述函数图象特征;用数学符号语言定义函数性质的过程体现了对函数研究的一般方法加强“数”与“形”的结合,由直观到抽象;由特殊到一般为进一步学习函数其他性质提供了方法依据在对函数单调性的探究过程中,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力;让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程本节课的教学重点:形成增(减)函数形式化定义二、教学目标设置(一)学习目标1. 结合函数图象,逐步让学生理解函数单调性的概念,掌握用函数单调性的定义证明简单函数在某区间上具有某种单调性的方法(步骤).2. 通过对函数单调性定义的探究,感悟数形结合的思想方法,培养观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力 3. 通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯,感知从具体到抽象,从特殊到一般,从感性到理性的认知过程(二)目标解析1能够以具体的例子说明某函数在某区间上是增函数还是减函数;并通过绘制图形说明函数在定义域的子集(区间)上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质.对于一个简单的函数能够用单调性的定义,证明它是增函数还是减函数.2在探究函数单调性定义时,领悟到数形结合思想、转化思想、变化与对应思想,并能运用这些数学思想观察、分析函数的图象,探究、归纳、概括函数单调性的概念3通过对函数单调性定义的探究,经历观察、分析、探究、归纳的认知过程,将函数图象的“上升”或“下降”这一特征能用该区间上“任意的,都有”的数学语言进行刻画.从气温随时间变化的具体例子入手,层层追问,引发学生思考,最终归纳得出函数单调性定义.在这一过程中,培养学生良好的思维品质,提高考虑问题全面的思维能力三、学生学情分析学生已有的认知基础是,初中学习过函数的概念,初步认识到函数是描述事物运动变化规律的数学模型,并且学习了一次函数、二次函数及反比例函数,能熟练的利用描点法画出这些函数的图象.进入高中以后又进一步学习了函数概念,认识到函数是两个非空数集间的一种对应知道函数有三种表示方法,充分认识到一个函数中自变量与函数值的对应关系,可以利用图象表示函数中函数值随自变量的变化而变化的规律和性质.“图象是上升的,函数是单调递增的;图象是下降的,函数是单调递减的”仅就图象角度直观描述函数单调性的特征,学生并不感到困难.困难在于,把具体的、直观形象的函数单调性特征抽象出来,用数学的符号语言描述.即把某区间上“随着的增大而增大”这一特征用该区间上“任意的,都有”进行刻画.其中最难理解的是为什么要在区间上“任意”取两个大小不等的教学中,通过观察引例的图象变化特征的研究,针对图象上升的部分,即“随着的增大而增大”,初步提出单调递增的说法,通过图象观察,提出猜想,经历讨论、交流、验证使学生克服思维障碍,经历从直观到抽象、具体到一般的形成知识的过程教学难点:形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表述,用定义证明函数单调性。四、教学策略分析为实现本节课的教学目标,突出重点,突破难点,教学上我主要采取了以下的策略:(1) 创设生活情境,找准切入点函数是描述事物运动变化规律的模型,生活中很多运动变化的现象都值得去关注,让学生通过观察荆州市某天气温变化曲线图的变化趋势,完成对单调性直观上的一种认识,并为概念的引入提供了必要性让学生带着问题(什么是函数的单调性?怎样判定函数的单调性?)进入新课(2)探索概念阶段,紧扣主线以温度曲线为例,让学生从图象上获得“上升”“下降”的整体认识,初步认识函数单调性通过观察、猜想、分析,从而用数学符号语言定描述函数在的单调性.最后通过类比,用数学符号语言定义一般函数的单调性 (3)注重思想方法的培养从气温的函数图象的观察出发,经历从直观到抽象,从图形语言到数学符号语言,进而理解增函数、减函数、单调区间概念的过程中,感悟数形结合思想、特殊到一般思想掌握通过观察图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确性,这一研究函数性质的常用方法(4)注重数学应用意识的培养在整个教学过程中,通过温度曲线创设情境,找准切入点,进入新课利用温度曲线构造反例,帮助学生理解函数单调性中的“任意性”在归纳反思中,利用温度曲线说明学习函数单调性知识具有实际意义五、教学过程 (一)创设情境,引入新知 探究一:我们知道,函数是研究事物运动变化规律的模型,生活中就有许多运动变化的现象是我们经常关注的,如荆州市某天24小时的温度曲线问题1:观察图象,说说气温随着时间的变化在怎样变化?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充 【设计意图】通过学生熟悉的实际问题引入课题为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性学生通过观察荆州市某天气温变化曲线图的变化趋势,完成对单调性直观上的一种认识(二)观察探究,形成新知问题2:如何用数学符号语言描述函数温度曲线在上, 随的增大而增大?师生活动:学生在教师的引导下,得出:在区间上取,当时,有问题3:反过来思考,在区间上取,当时,成立,图象在区间上就一定是上升的吗?学生相互合作交流讨论:由学生上台在黑板上画出反例,说明图象不一定是上升的,老师讲解 学生在教师的引导下,总结:函数在区间上任取值,当时,都有就能说明函数在区间上随的增大而增大;函数在区间上是增函数,区间是增区间。【设计意图】观察图象,学生在教师的引导下,用数学符号语言“函数在区间上任取两个,当时,有”来描述“随着的增大而增大”,学生经历从直观到抽象,从图形语言到数学符号语言,进而理解增函数、减函数、单调区间概念的过程将区间用字母D表示,就得到了函数单调增函数的定义:一般地,设函数的定义域为,如果对于定义域内的某个区间上的任意两个自变量的值,当时,都有,那么就说函数在区间上是增函数,区间D是增区间。【设计意图】体现了对函数研究的一般方法:由特殊到一般的思想方法 问题4:减函数的定义呢?大家一起说!【设计意图】得出减函数定义,培养学生的类比能力辨一辨:判断下列说法是否正确,说明理由:(1)某地0点温度高于1点半的温度,1点半的温度高于5点的温度,则该地0点至5点温度一直在下降.(2)对于函数在其定义域内有无穷多个值,满足,则函数在其定义域内是增函数.(3)对于区间上的任意有,则函数在区间上单调递增【设计意图】通过辨析,进一步加深学生理解定义中的关键词(三)巩固提高,应用新知例1 下图是定义在区间上的函数,根据函数图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?师生活动:学生观察图象,独立完成,教师解答学生在解决问题过程中出现的问题如:单调区间是定义域的子集;本题中,如果用并集符号,不符合单调性定义;本题中,区端点处有意义,那么区间开闭都可以【设计意图】学生能够通过函数图象说出函数的单调区间,加深对函数单调性概念的理解 例2:物理学中的玻意耳定律(为正常数)告诉我们,对于一定量的气体,当其体积减小时,压强将增大试用函数的单调性证明之师生活动:帮助学生分析例2,引导学生将物理问题转化为数学问题,解题过程由学生思考陈述,教师板书证明过程,师生共同总结用定义证明函数为增(减)函数的基本步骤【设计意图】利用单调性证明物理学中的玻意耳定律,学生感受到函数单调性的初步应用;教师引导下,学生熟悉用定义证明函数为增(减)函数的基本步骤 问题5:探究初中所学一次函数,二次函数,反比例函数各自的单调性,重点探究反比例函数的单调性。探究二:初中学习的几种函数的单调性 问题6:回答初中所学几种函数类型,及它们各自的单调区间和单调性。师生活动:学生讨论,老师指出两个减区间不能并起来,强调判断的依据就是单调性的定义。【设计意图】学生体会:通过数形结合思想的运用,观察图象,先对函数是否具有某种性质进行猜想,然后通过逻辑推
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市合伙人协议Ucar6篇
- 2025年智能家居行业智能家居技术应用前景分析研究报告
- 2025年汽车行业智能驾驶技术发展前景分析报告
- 2025年智能机器人行业新产品应用与市场前景研究报告
- 2025年物联网行业发展前景及创新应用研究报告
- 2025年通讯行业5G技术应用与发展前景研究报告
- 商场供暖期安全应急培训课件
- 宁波市2025年浙江宁波慈溪市招引高层次和紧缺人才15名笔试历年参考题库附带答案详解
- 吉林省2025年吉林省省直事业单位招聘工作人员5号(65人)笔试历年参考题库附带答案详解
- 南宁市2025广西南宁市隆安县招聘乡镇残疾人专职委员1人笔试历年参考题库附带答案详解
- 2025年驾驶员安全培训考试试题库卷(答案+解析)
- 无人机培训课件
- 2025辽宁沈阳副食集团所属企业招聘3人考试参考题库及答案解析
- 储罐区的安全题库及答案解析
- 交大入党测试题及答案
- 培训如何开早会的课件
- 2025年河北沧州市中心医院、沧州博施康养集团公开招聘辅助岗工作人员113名考试参考试题及答案解析
- 消防员抗洪抢险知识培训课件
- 历年时事政治试题及答案
- 2025年法考真题及答案
- 摄像基础培训课件
评论
0/150
提交评论