




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTER3 THEDERIVATIVE 微积分学的创始人 德国数学家Leibniz 微分学 导数 导数思想最早由法国 数学家Ferma在研究 极值问题中提出 英国数学家Newton 2 1 TwoProblemswithOneTheme TangentLines SecantLines Theslopeofasecantlinebetween2pointsonacurveisthechangeiny valuesdividedbythechangeinx values Sinceatangentlinetouchesonlyonepointonthecurve howdowefindtheslopeoftheline Weconsidertheslopeof2pointsthatareINFINITELYclosetogetheratthepointoftangency thusalimit AverageVelocity InstantaneousVelocity Similartoslopeofasecantline tofindaveragevelocity wefindthechangeindistancedividedbythechangeintimebetween2pointsonatimeinterval Tofindinstantaneousvelocity wefindthedifferenceindistanceandtimebetweentwopointsintimethatareINIFINITELYclosetogether again alimit TangentLineSlopeatx c InstantaneousVelocityatt caredefinedtheSAME 一 引例 1 变速直线运动的速度 设描述质点运动位置的函数为 则到的平均速度为 而在时刻的瞬时速度为 自由落体运动 机动目录上页下页返回结束 Afallingbody svelocityisdefined Findtheinstantaneousvelocityatt 1seconds 2 曲线的切线斜率 曲线 在M点处的切线 割线MN的极限位置MT 当时 割线MN的斜率 切线MT的斜率 机动目录上页下页返回结束 两个问题的共性 瞬时速度 切线斜率 所求量为函数增量与自变量增量之比的极限 类似问题还有 加速度 角速度 线密度 电流强度 是速度增量与时间增量之比的极限 是转角增量与时间增量之比的极限 是质量增量与长度增量之比的极限 是电量增量与时间增量之比的极限 变化率问题 机动目录上页下页返回结束 RestofChange 3 2TheDerivative Thederivativeoff x isdesignatedasf x orf ory 3 2TheDerivative 思考与练习 1 函数在某点处的导数 区别 是函数 是数值 联系 注意 有什么区别与联系 与导函数 机动目录上页下页返回结束 二 导数的定义 定义1 设函数 在点 存在 并称此极限为 记作 即 则称函数 若 的某邻域内有定义 机动目录上页下页返回结束 运动质点的位置函数 在时刻的瞬时速度 曲线 在M点处的切线斜率 机动目录上页下页返回结束 若上述极限不存在 在点不可导 若 也称 在 若函数在开区间I内每点都可导 此时导数值构成的新函数称为导函数 记作 就说函数 就称函数在I内可导 的导数为无穷大 机动目录上页下页返回结束 3 6LeibnizNotation Differentiabilityimpliescontinuity Ifthegraphofafunctionhasatangentatpointc thenthereisno jump onthegraphatthatpoint thusiscontinuousthere 函数的可导性与连续性的关系 定理 证 设 在点x处可导 存在 因此必有 其中 故 所以函数 在点x连续 注意 函数在点x连续未必可导 反例 在x 0处连续 但不可导 即 机动目录上页下页返回结束 2 设 存在 则 3 已知 则 4 若 时 恒有 问 是否在 可导 解 由题设 由夹逼准则 故 在 可导 且 机动目录上页下页返回结束 2 3 RulesforFindingDerivatives 常数和基本初等函数的导数 机动目录上页下页返回结束 例 求椭圆 在点 处的切线方程 解 椭圆方程两边对x求导 故切线方程为 即 机动目录上页下页返回结束 四则运算求导法则 定理 的和 差 积 商 除分母 为0的点外 都在点x可导 且 下面分三部分加以证明 并同时给出相应的推论和 例题 机动目录上页下页返回结束 此法则可推广到任意有限项的情形 证 设 则 故结论成立 机动目录上页下页返回结束 例如 2 证 设 则有 故结论成立 推论 机动目录上页下页返回结束 C为常数 3 证 设 则有 故结论成立 推论 机动目录上页下页返回结束 C为常数 例 解 机动目录上页下页返回结束 有限次四则运算的求导法则 C为常数 机动目录上页下页返回结束 2 4 DerivativesofTrigonometricFunctions Formula 解 f sinx cosxf cosx sinx Findderivativesofothertrig functionsusingthesederivativesandapplyingproductruleand orquotientrule 例 求证 证 类似可证 机动目录上页下页返回结束 Derivativesofsec x csc x andcot x Allarefoundbyapplyingtheproductand orquotientrulesandusingknownderivativesofsin x andcos x 2 5 TheChainRule 复合函数求导法则 Foracompositefunction itsderivativeisfoundbytakingthederivativeoftheouterfunction withrespecttotheinnerfunction timesthederivativeoftheinnerfunctionwithrespecttox Ifthecompositionconsistsof3ormorefunctions continuetotakethederivativeofthenextinnerfunction withrespecttothefunctionwithinit until finally thederivativeistakenwithrespecttox 在点x可导 复合函数求导法则 定理3 在点 可导 复合函数 且 在点x可导 证 在点u可导 故 当时 故有 机动目录上页下页返回结束 求下列函数的导数 例如 关键 搞清复合函数结构 由外向内逐层求导 推广 此法则可推广到多个中间变量的情形 机动目录上页下页返回结束 例 求 解 例 设 解 求 机动目录上页下页返回结束 例 求 解 关键 搞清复合函数结构由外向内逐层求导 机动目录上页下页返回结束 例 设 求 解 机动目录上页下页返回结束 Findthederivative notethisisthecompositionof3functions thereforetherewillbe3 pieces tothechain 3 7 Higher OrderDerivatives f 2ndderivativef 3rdderivativef 4thderivative etc The2ndderivativeisthederivativeofthe1stderivative The3rdderivativeisthederivativeofthe2ndderivative etc 定义 若函数 的导数 可导 或 即 或 类似地 二阶导数的导数称为三阶导数 阶导数的导数称为n阶导数 或 的二阶导数 记作 的导数为 依次类推 分别记作 则称 机动目录上页下页返回结束 Velocityisthederivativeofdistancewithrespecttotime 1stderivative andAccelerationisthederivativeofvelocitywithrespecttotime 2ndderivativeofdistancewithrespecttotime Up orright isapositivevelocity Down orleft isanegativevelocity Whenanobjectreachesitspeak itsvelocityequalszero 速度 即 加速度 即 引例 变速直线运动 机动目录上页下页返回结束 3 8 ImplicitDifferentiation Anapplicationofthechainrule yisnowconsideredasafunctionofx thereforeweapplythechainruletoyApplyallappropriaterulesandsolvefordy dx Findthederivative 例 求椭圆 在点 处的切线方程 解 椭圆方程两边对x求导 故切线方程为 即 机动目录上页下页返回结束 例 求 的导数 解 两边取对数 化为隐式 两边对x求导 机动目录上页下页返回结束 1 对幂指函数 可用对数求导法求导 说明 注意 机动目录上页下页返回结束 2 有些显函数用对数求导法求导很方便 例如 两边取对数 两边对x求导 机动目录上页下页返回结束 又如 对x求导 两边取对数 机动目录上页下页返回结束 设 由方程 确定 解 方程两边对x求导 得 再求导 得 当 时 故由 得 再代入 得 求 机动目录上页下页返回结束 设 求 分别用对数微分法求 答案 机动目录上页下页返回结束 2 8 RelatedRatesAvery veryimportantapplicationofthederivative Appliestosituationswheremorethanonevariableischangingwithrespecttotime Theothervariablesaredefinedwithrespecttotime andwedifferentiateimplicitlywithrespecttotime 相关变化率 为两可导函数 之间有联系 之间也有联系 称为相关变化率 相关变化率问题解法 找出相关变量的关系式 对t求导 得相关变化率之间的关系式 求出未知的相关变化率 机动目录上页下页返回结束 相关变化率 为两可导函数 之间有联系 之间也有联系 称为相关变化率 相关变化率问题解法 找出相关变量的关系式 对t求导 得相关变化率之间的关系式 求出未知的相关变化率 机动目录上页下页返回结束 例 一气球从离开观察员500m处离地面铅直上升 其速率为 当气球高度为500m时 观察员 视线的仰角增加率是多少 解 设气球上升t分后其高度为h 仰角为 则 两边对t求导 已知 h 500m时 机动目录上页下页返回结束 由参数方程确定的函数的导数 若参数方程 可确定一个y与x之间的函数 可导 且 则 时 有 时 有 此时看成x是y的函数 关系 机动目录上页下页返回结束 例 抛射体运动轨迹的参数方程为 求抛射体在时刻t的运动速度的大小和方向 解 先求速度大小 速度的水平分量为 垂直分量为 故抛射体速度大小 再求速度方向 即轨迹的切线方向 设 为切线倾角 则 机动目录上页下页返回结束 抛射体轨迹的参数方程 速度的水平分量 垂直分量 在刚射出 即t 0 时 倾角为 达到最高点的时刻 高度 落地时刻 抛射最远距离 速度的方向 机动目录上页下页返回结束 2 9 Differentials Approximationsdxisthedifferentialofx graphicallyitisthechangeinthexofthetangenttothecurve dy dx dyisthedifferentialofy graphicallyiscorrespondstothechangeintheyofthetangenttothecurve dy dx 微分在近似计算中的应用 当 很小时 使用原则 得近似等式 机动目录上页下页返回结束 微分在估计误差中的应用 某量的精确值为A 其近似值为a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路危险货物运输规程培训考试题
- 2025年新能源行业反垄断风险与技术政策导向报告
- 2025年泰州中考语文试卷及答案
- 2025年孝感一模语文试卷及答案
- 2025年全国卷3试卷及答案
- 教育精准扶贫背景下农村学校发展现状与对策研究报告
- 皖南八校试卷及答案
- 法语等级考试监考试题
- 购销合同模板(3篇)
- 广告点位租赁合同模板(3篇)
- 两相流数值模拟(第9讲)-VOF方法及其应用04课件
- 华北理工采矿学课件14采矿方法分类
- 人教鄂教版六年级科学上册知识点总结
- 公司工程数量管理办法
- 宇宙中的地球 1.3地球的历史(第1课时)课件
- 支部委员会委员选票一
- 锅炉安装改造维修施工工艺标准
- 如何书写个案护理报告
- 一线医务人员登记表(模板)
- 战略销售蓝表中文版
- 2021年四年级数学上册二两三位数除以两位数整理与练习课件苏教版
评论
0/150
提交评论