




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 内容 经典谱估计与现代谱估计参数模型法概述基于AR模型的谱估计法最大熵谱估计算法最小方差谱估计基于矩阵特征分解的谱估计高阶谱估计呛口小辣椒博客 2 内容 随机信号的特征经典谱估计与现代谱估计参数模型法概述基于AR模型的谱估计法最大熵谱估计算法最小方差谱估计基于矩阵特征分解的谱估计高阶谱估计 3 高阶谱估计 研究的必要性高阶统计量高阶谱高阶累积量和多谱的性质三阶相关和双谱及其性质基于高阶谱的相位谱估计基于高阶谱的模型参数估计多谱的应用参考 现代数字信号处理 184 199 204 205 4 研究高阶谱的必要性 关于模型参数估计问题所谓模型参数估计 就是根据有限长的数据序列 如模型输出端所观测到的信号y n 来估计图中随机信号模型的参数 与前面所述不同之处在于 这里考虑了观测过程所引入的噪声v n 5 研究高阶谱的必要性 基于二阶统计量的模型参数估计方法的缺陷 前述模型参数估计方法中 估计得到的模型参数仅与信号的自相关函数或功率谱包络相匹配 其功率谱不含信号的相位特性 亦称盲相 即 这种模型只适合于高斯随机信号 因为高斯信号仅用二阶统计量 均值和方差 就能加以描述 6 研究高阶谱的必要性 二阶统计量方法的基本限制前面讨论的方法中 一般都假设 信号模型中的系统H z 是最小相位的 激励信号u n 是均值为零 方差为的高斯白噪声 测量信号v n 是均值为零 方差为的高斯白噪声 且v n 与信号x n 统计无关 即v n 不影响信号的谱形状故有 7 研究高阶谱的必要性 二阶统计量方法存在的问题 在许多实际应用 如地震勘探 水声信号处理 远程通信 中 往往不能满足上述假设 甚至系统是非线性的 对于非高斯信号的模型参数 如仅仅考虑与自相关函数匹配 就不可能充分获取隐含在数据中的信息 若信号不仅是非高斯的 而且是非最小相位的 采用基于自相关函数的估计方法所得到的模型参数 就不能反映原信号的非最小相位特点 当测量噪声较大 尤其当测量噪声有色时 基于自相关函数的估计方法所得到的模型参数有较大的估计误差 8 研究高阶谱的必要性 解决问题的方法 从观测数据中提取相位信息信号分析必须具有抗有色噪声干扰的能力因此 必须用高阶谱 高阶统计量 来分析信号 9 随机信号的高阶特征 功率谱估计 Wiener滤波器都是以信号的相关函数为工具 模型的多重性 考虑功率谱 即不同ARMA过程具有相同形状的功率谱 这一特性称为相关函数的多重性或模型的多重性 相关函数的局限性 10 随机信号的高阶特征 续 两个具有零均值和相同方差的高斯白色噪声和指数分布白色噪声显然是不同的随机过程 但它们的功率谱相同 用这样两个白色噪声激励同一个ARMA模型 产生的两个ARMA过程显然是不同的随机过程 但它们的功率谱相同 两个灰度图相同的图像有可能是不同的图像 以上事实说明 要准确地刻画随机信号 仅使用相关函数 二阶统计量 是不够的 还必须使用更高阶的统计量 三阶和更高阶的统计量合称高阶统计量 相关函数 刻画信号的粗糙像高阶统计量 刻画信号的细节 11 高阶统计量 特征函数与高阶矩 特征函数 随机变量x的特征函数定义为 或 其中f x 是随机变量x的概率密度函数 高阶矩 对 1b 求k阶导数 得 则随机变量x的k阶矩 即k阶原点矩 定义为 由于k阶矩由生成 故特征函数为随机变量x的矩生成函数 矩母函数 又成为第一特征函数 12 高阶统计量 累积量生成函数与高阶累积量 cumulant 累积量生成函数 或 称为累积量生成函数 第二特征函数或累积量母函数 高阶累积量 随机变量x的k阶累积量定义为 即累积量生成函数的k阶导数在原点的值 13 高阶统计量 累积量生成函数与高阶累积量 cumulant 高阶矩与高阶累积量的关系 关系 注意 k阶中心矩定义为 结论 二 三阶累积量分别是二 三阶中心矩 均值为零时 就是二 三阶相关 矩 四阶以上的累积量不等于相应的中心矩 14 高阶统计量 累积量的物理意义 高斯随机变量的高阶矩与累积量 高斯随机变量可用二阶矩完全描述 实际上 零均值高斯随机变量的k阶矩 或零均值的k阶中心矩 为 高斯随机变量只有一阶和二阶累积量 其二阶以上的累积量为零 它不提供新的信息 即 可见 其高阶矩仍然取决于二阶矩 若任一随机变量与高斯随机变量有相同的二阶矩 则累积量就是它们高阶矩的差 故有如下累积量的物理意义 15 高阶统计量 累积量的物理意义 一阶累积量 数学期望 描述了概率分布的中心 二阶累积量 方差 描述了概率分布的离散程度 三阶累积量 三阶矩 描述了概率分布的不对称程度 累积量衡量任意随机变量偏离正态 高斯 分布的程度 物理意义 偏态与峰态 将三阶矩除以均方差的三次方 得偏态系数或偏态 将四阶累积量除以均方差的四次方 得峰态 16 高阶谱 功率谱的缺点 由功率谱只能恢复 不可能恢复自相关函数辨识系统 无法辨识非最小相位系统 模型的多重性 自相关函数等价性 功率谱等价性 17 高阶谱 续 含义 高阶谱 Higher orderspectrum 又称多 polyspectrum 是信号多个频率的能量谱 定义 高阶谱定义为k阶累积量的k 1维DFT 即 条件 绝对可求和 通常将的累积量谱称为高阶谱或多谱 常用 常用的高阶谱是三阶谱 双谱 和四阶谱 三谱 18 高阶谱 续 二阶谱即为功率谱 它是单个频率的谱 三阶谱为双谱 bispectrum 即两个频率的谱 四阶谱为三谱 trispectrum 即三个频率的谱 19 高阶谱 续 功率谱 双谱 三谱 1 双谱估计的直接方法 20 高阶谱 续 2 双谱估计的间接方法 2D FT 峰度 归一化峰度 高斯信号 亚高斯信号 超高斯信号 21 高阶谱 续 归零化峰度 高斯信号 零峰度 亚高斯信号 负峰度 超高斯信号 正峰度 22 高阶累积量和多谱的性质 主要性质 8个性质 最重要的性质如下 和的累积量等于累积量之和 累积量因此得名 随机信号通过线性系统后的累积量等于该随机信号的累积量与线性系统冲激响应累积量的卷积信号的高阶累积量能够决定信号模型的冲激响应h n 即用信号模型的输出信号 即观测到的信号 y n 的高阶累积量就能决定h n 23 高阶累积量和多谱的性质 主要性质 续 确定性序列的多谱 确定性序列 h 1 h k 的k阶累量 其k阶谱为 式中 24 高阶累积量和多谱的性质 用高阶累积量作为时间序列分析工具的原因用高阶累量而不是高阶矩作为时间序列分析工具的原因 理论上 使用高阶累积量可避免高斯有色噪声的影响 高阶矩不能做到这一点 高阶白噪声的高阶累积量是多维冲激函数 其谱是多维平坦的 但高阶白噪声的高阶矩及其谱无此特性和优点 累积量问题的解具有唯一性 因特征函数唯一地确定概率密度函数 但矩问题不具有唯一性 两个统计独立的随机过程的累积量等于各随机过程累积量之和 这一结论对高阶矩不成立 25 三阶相关与双谱及其性质 三阶相关 设x n 为零均值的实平稳序列 其三阶相关函数为 双谱Rx m1 m2 的二维傅立叶变换就是双谱 其表达式为 性质 三阶相关函数的对称性双谱的对称性 周期性和共轭性 定义 26 三阶相关与双谱及其性质 双谱中的相位信息 其中 这表明双谱包含信号模型的相位信息 而功率谱不含相位信息 设 则有 且有 确定性序列的双谱设h n 表示有限长确定性序列 其双谱可表示为 27 基于高阶谱的相位谱估计 自相关函数丢失了信号的相位特性 而累积量可以得到信号的相位谱 实际应用中 基于三阶累积量的双谱和基于四阶累积量的三谱已经够用 28 基于高阶谱的模型参数估计 基本原理 与AR功率谱估计 即单谱估计 相类似 AR过程的多谱估计与已知的多谱相匹配的程度 也可用线性预测的多谱来衡量 亦也可以用多谱的平坦度来衡量 说明如下 设用p个值x n 作线性预测 即 则预测误差 其多谱为 式中 29 基于高阶谱的模型参数估计 基本原理 续 如果选择系数ak 使得 式中为一常量 则有 上式表明 x n 是由 的非正态白噪声激励参数为 ak k 1 p 的AR过程产生的 结论 预测误差的多谱的平坦度可用作AR过程多谱与实际多谱接近程度的一种度量 30 基于高阶谱的模型参数估计 不稳定问题及其解决方法 不稳定问题 用单谱 功率谱 和多谱估计AR模型参数时 都存在稳定性问题 解决办法 当用单谱估计AR模型时 只要把不稳定极点替换为其倒数极点 反演技术 即可 这是因为 当用多谱估计AR模型时 不能作这种替换 以双谱为例 而 故 31 多谱的应用 多谱应用 用于信息学 海洋学 地球物理学 生物医学 机械学和经济时间序列分析等学科领域对信号处理而言 多谱可应用于自适应信号处理 阵列信号处理和多维信号处理信号处理中多谱的作用 从正态信号中提取信息检测和定性分析系统的非线性特征从有色正态噪声中提取信号 如水下信号 空间信号等 提取非正态信号的相位信息 32 双谱在目标识别中的应用 特性 1 保留了幅值特性 2 保留了相位特性 3 平移不变性 应用 1 飞机目标 机动飞行希望目标特性于飞机飞行姿态无关 平移不变性 2 飞机的电磁波辐射合散射特性天线罩 发动机 出去口 蒙皮材料 相位天线 3 飞机尺寸 机长 翼宽 幅值特性 33 双谱在目标识别中的应用 续 1 径向积分双谱 RIB radicallyintegratedbispectrum 2 轴向积分双谱 AIB axisiallyintegratedbisp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年在线教育平台教学质量提升策略与学习支持服务研究报告
- 2025年教育大数据:智慧教育体系建设与应用前景报告
- 2025年疫苗产业发展动态及新冠疫情常态化防控策略研究报告
- 2025年工业互联网平台网络流量整形技术在工业互联网平台可持续发展中的应用报告
- 2025年在线教育平台用户界面设计与满意度提升策略
- 养老社区季度工作计划范文
- 市场营销策划公司合伙协议书
- 2025年茶餐厅行业品类发展分析报告
- 数字化转型赋能制造业生产效率提升
- 屋顶上的花园
- 简版操作手册-北森招聘
- 常用原材料的试验取样方法
- JJG 707-2003扭矩扳子
- GB/T 26562-2011自行式坐驾工业车辆踏板的结构与布置踏板的结构与布置原则
- GB/T 11718-2021中密度纤维板
- 商务英语情景对话100主题(迅速提高口语)
- 《高频电子线路》课后答案-曾兴雯版高等教育出版社
- 《舞蹈艺术赏析》课件
- PLC项目实操练习题
- 《新能源材料与器件》教学课件-04电化学能源材料与器件
- 轻型门刚设计中风荷体型系数取值的适用标准讨论
评论
0/150
提交评论