深度学习在图像处理中应用总结和优化.doc_第1页
深度学习在图像处理中应用总结和优化.doc_第2页
深度学习在图像处理中应用总结和优化.doc_第3页
深度学习在图像处理中应用总结和优化.doc_第4页
深度学习在图像处理中应用总结和优化.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深度学习在图像处理中应用总结和优化/kwotsin/awesome-deep-visionfrom /m2dsupsdlclass/lectures-labsLeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).Gradient-based learning applied to document recognition.LeNetSimonyan, Karen, and Zisserman. “Very deep convolutionalnetworks for large-scale image recognition.” (2014) VGG-16Simplified version of Krizhevsky, Alex, Sutskever, and Hinton.“Imagenet classification with deep convolutional neural networks.”NIPS 2012 AlexNetHe, Kaiming, et al. “Deep residual learning for imagerecognition.” CVPR. 2016. ResNetSzegedy, et al. “Inception-v4, inception-resnet and the impactof residual connections on learning.” (2016)Canziani, Paszke, and Culurciello. “An Analysis of Deep NeuralNetwork Models for Practical Applications.” (May 2016).classification and localizationRedmon, Joseph, et al. “You only look once: Unified, real-timeobject detection.” CVPR (2016)Liu, Wei, et al. “SSD: Single shot multibox detector.” ECCV2016Girshick, Ross, et al. “Fast r-cnn.” ICCV 2015Ren, Shaoqing, et al. “Faster r-cnn: Towards real-time objectdetection with region proposal networks.” NIPS 2015Redmon, Joseph, et al. “YOLO9000, Faster, Better, Stronger.”2017segmentationLong, Jonathan, et al. “Fully convolutional networks forsemantic segmentation.” CVPR 2015Noh, Hyeonwoo, et al. “Learning deconvolution network forsemantic segmentation.” ICCV 2015Pinheiro, Pedro O., et al. “Learning to segment objectcandidates” / “Learning to refine object segments”, NIPS 2015 /ECCV 2016Li, Yi, et al. “Fully Convolutional Instance-aware SemanticSegmentation.” Winner of COCO challenge 2016.弱监督学习 Weak supervisionJoulin, Armand, et al. “Learning visual features from largeweakly supervised data.” ECCV, 2016Oquab, Maxime, “Is object localization for free? –Weakly-supervised learning with convolutional neural networks”,2015Self-supervised learningDoersch, Carl, Abhinav Gupta, and Alexei A. Efros.“Unsupervised visual representation learning by contextprediction.” ICCV 2015.dnn优化Ren, Mengye, et al. “Normalizing the Normalizers: Comparingand Extending Network Normalization Schemes.” 2017Salimans, Tim, and Diederik P. Kingma. “Weight normalization:A simple reparameterization to accelerate training of deep neuralnetworks.” NIPS 2016.Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton.“Layer normalization.” 2016.Ioffe, Sergey, and Christian Szegedy. “Batch normalization:Accelerating deep network training by reducing internal covariateshift.” ICML 2015GeneralizationUnderstanding deep learning requires rethinkinggeneralization, C. Zhang et al., 2016.On Large-Batch Training for Deep Learning: Generalization Gapand Sharp Minima, N. S. Keskar et al., 20161. A strong optimizer is not necessarily a stronglearner.2. DL optimization is non-convex but bad local minima andsaddle structures are rarely a problem (on common DL tasks).3. Neural Networks are over-parametrized but can stillgeneralize.4. Stochastic Gradient is a strong implicit regularizer.5. Variance in gradient can help with generalization but canhurt final convergence.6. We need more theory to guide the design of architecturesand optimizers that make learning faster with fewer labels.7. Overparametrize deep architectures8. Design architectures to limit conditioning issues:(1)Use skip / residual connections(2)Internal normalization layers(3)Use stochastic optimizers that are robust to badconditioning9. Use small minibatches (at least at the beginning ofoptimization)10. Use validation set to anneal learning rate and do earlystopping11. Is it very often possible to trade more compute

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论