Advanced-Digital-Signal-Processing-ch1-fundamentals.ppt_第1页
Advanced-Digital-Signal-Processing-ch1-fundamentals.ppt_第2页
Advanced-Digital-Signal-Processing-ch1-fundamentals.ppt_第3页
Advanced-Digital-Signal-Processing-ch1-fundamentals.ppt_第4页
Advanced-Digital-Signal-Processing-ch1-fundamentals.ppt_第5页
免费预览已结束,剩余63页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AdvancedDigitalSignalProcessing ModernDigitalSignalProcessing Chapter1FundamentalsforDiscreteRandomSignalAnalysisandProcessing 1 1DiscreteRandomSignalandItsRepresentation RandomSignalSignalwhosevaluesarerandomSignalvaluevarieswithtime butitcannotberepresentedbyadeterministicfunctionoftimeForacertaininstant signalvalueisarandomvariableAsampleofarandomsignaliscalledarealization afunctionoftime TheClassificationofRandomSignalContinuousrandomsignal SignalwhichiscontinuousintimeandamplitudedomainDiscreterandomsignal randomsequence SignalwhichiscontinuousinamplitudebutdiscreteintimeContinuoustime discreteamplituderandomsignalDigitalrandomsignal Signalwhichisdiscreteinbothamplitudeandtime Itcanbetreatedasrandomsequencebyignoringquantizationeffectsorfiniteword lengtheffects ExamplesofRandomSignalContinuousrandomsignal 3realizations Randomsequence 3realizations TheRepresentationofRandomSequenceArandomsequencecanbemodeledbyadiscrete timestochasticprocessisarandomvariable denotedasTimeisfixedandvalueisvariableorisarealization samplesequence isvariablebutisfixedisanumberBothandisfixedisastochasticprocessBothandisvariable brieflydenotedas TheCompleteDescriptionofaStochasticProcess RandomSequence TheNthprobabilitydistributionfunctionTheNthprobabilitydensityfunction PDF If thenisarandomvariableanditsProbabilitydistributionfunction PDF TheNumericalCharacteristics Statistics ofRandomSequenceExpectationormeanvalue 1st ordermoment Meansquarevalue 2nd orderoriginmoment Variance 2nd ordercentralmoment ThecorrelationofthesamerandomsequenceindifferenttimeAutocorrelationfunction 2nd ordermixedoriginmoment Itisarelevancemeasureoftheoutcomesoftherandomsequenceattimeinstantsn1andn2Autocovariancefunction 2nd ordermixedcentralmoment ascatterordispersionmeasure representscomplexconjugate ThecorrelationofdifferentrandomsequencesindifferenttimeCross correlationfunctionisthejointPDFofrandomvariableandCross covariancefunction High ordermomentsThemomentswhoseorderishigherthan2ndTheyareusuallyusedtoanalyzethenon Gaussianrandomsequences 1 2StationaryRandomSequence Strict SenseStationaryRandomSequenceTherandomsequencewithtime invariantprobabilitydistributionfunctionorPDFThenumericalcharacteristics statistics ofstrict sensestationaryrandomsequencearealsotime invariant Weakly Wide Sense StationaryRandomSequenceTherandomsequencesatisfiesBothits1st orderand2nd ordermomentsexistForanyintegerm Foranyintegern1 n2andm Theweaklystationaryrandomsequenceisusuallycalled stationaryrandomsequence forshortorabbreviatedasWSS wide sensestationary randomsequence Noticethatastrict sensestationarysignalisnotalwaysweaklystationaryoneandmostweaklystationarysignalsarenotstrict sensestationary Propertiesof Weakly StationaryRandomSequenceMeansquareandvarianceareirrelevanttotimeAutocovarianceistime shift invariantAutocorrelationisconjugatesymmetrical AutocorrelationmatrixisanHermitematrix Ifx n isrealsignal thenRxxisrealsymmetricalandnonnegativedefinitematrix Ifx n andy n arestationaryrandomsequencesrespectivelyandtheyarejointlystationary thenIfrxy m 0foranyintegerm thenx n andy n aremutuallyorthogonalIfrxy m mxmy i e covxy m 0foranyintegerm thenx n andy n aremutuallyuncorrelated PropertiesofReal ValuedStationaryRandomSequenceIfrandomsequencesx n andy n arestationaryandreal valued then 1 3Frequency DomainDescriptionofStationaryRandomSequence Wiener KhintchineTheoremTherelationbetweentheautocorrelationfunctionandpowerspectrumdensity PSD ofstationaryrandomsequencex n ifmx 0 thenrxx 0 istheaveragepowerofx n PropertiesofthePSDofReal ValuedStationaryRandomSequencePSDisevenabout PSDisrealandnonnegativeTheCross PSDofReal ValuedStationaryRandomSequencesx n andy n 1 4TheErgodicityofStationaryRandomSequence DefinitionLetxs n beasample realization ofastationarystochasticsequencex n thenx n issaidtobeergodicif TheUnderstandingofErgodicityThestatisticalexpectationalongthetimeofonerealizationissameasthestatisticalexpectationacrossthespace orensemble ofdifferentrealizationsoftherandomsequence itcanbedenotedbrieflyasTheergodicityofrandomsequencefacilitatestheanalysisofstationaryrandomsequencebyexaminingonerealizationofthissignalinsteadofthesetofsignalsamples 1 5SomeUsefulClassesofRandomSequencesorStochasticProcesses Gaussian Normal RandomSequenceArandomsequencexs n withNthPDF TheAdvantagesofGaussianModelGaussianPDFonlydependsonits1st orderand2nd ordermoments Awide sensestationaryGaussianprocessisalsoastrict sensestationaryprocessandviceversa GaussianPDFscanmodelthedistributionofmanyprocessesincludingsomeimportantclassesofsignalsandnoise ThesumofmanyindependentrandomprocesseshasaGaussiandistribution centrallimittheorem Non Gaussianprocessescanbeapproximatedbyaweightedcombination i e amixture ofanumberofGaussianpdfsofappropriatemeansandvariances OptimalestimationmethodsbasedonGaussianmodelsoftenresultinlinearandmathematicallytractablesolutions MarkovProcessAstochasticprocesswhoseconditionalPDFsatisfiesisa1st orderMarkovprocess orMarkovprocessforshort ThestateoftheMarkovprocessattimendependsonlyonitsstateattimen 1andisindependentoftheprocesshistorybeforen 1 Gauss MarkovProcessstochasticprocessesthatsatisfytherequirementsforbothGaussianprocessesandMarkovprocessesIftheinputofaMarkovprocessisaGaussianrandomsequence thentheoutputisaGauss Markovrandomsequence stochasticprocess Gauss Markovprocessisnotalwaysstationary AscalarstationaryGauss Markovprocessx n withvarianceandtimeconstanthasautocorrelationfunctionandPSDasfollowingforms WhiteNoiseSequenceAwhitenoisesequenceisarandomprocessofrandomvariablesthatareuncorrelatedandhaveafinitevariance i e ThemeanvalueofwhitenoisesequenceiszeroAstationarywhitenoisesequencehasaconstantPSD ThedifferencebetweenirrelevanceandindependenceThattworandomvariables orsignals xandyareirrelevant uncorrelated impliesthatforanymThattworandomvariables orsignals xandyarestatisticalindependentimpliesthattheirjointPDFIndependent uncorrelated butuncorrelatedindependentForthewhitenoisesequencewithGaussiandistribution uncorrelated independent SomeexamplesoftherealizationofwhitenoisesequenceStandardnormaldistributionUniformdistributionbetween 1 1 HarmonicProcesswhereHarmonicprocessx n isastationaryprocess Independentandidenticallydistributed ExampleofHarmonicProcess 3Realizations 1 6LTISystemswithStationaryRandomInputs LTIsystemwithunitpulseresponseh n Stationaryrandomsequencex n systemresponsey n H z Y z X z my n ryy n n m andtheStationaryofy n Therefore likethex n y n isalsoastationaryrandomsequence Irrelevantwithn ThePSDofy n TheCross Correlation Cross PSDofx n andy n TheCorrelation ConvolutionTheorem Proof TimeSeriesModelofStationaryRandomSequences linearsystemwithsystemfunctionH z Whitenoisew n x n Astationaryrandomsequencecanbedenotedasanoutputofalinearsystemwithawhitenoiseinput 1 7TimeSeriesModel Ifthelinearsystemhassystemfunction ThenH z iscalledthetimeseriesmodelofx n and IfallthezerosandpolesofH z areinsidetheunitcircle thentheH z iscalledaminimumphasesystem Ithasminimumphaselagamongallthesystemswithsameamplitude frequencyresponse Aminimumphasesystemusuallyhasastableinvertiblesystem ThreekindsoftimeseriesmodelsMoving average MA model Ifqisfinite thentheH z isaFIRfilter TheMAmodelissuitablefordescribingthesequenceswhosePSDhasvalesbuthasnopeak canbemodeledwithlessorders Auto regressive AR model TheARmodelisstableiffallitspolesareinsidetheunitcircle ItissuitableforthedescriptionofthesequenceswhosePSDhaspeaksbuthasnovale Auto regressivemovingaverage ARMA model TheARMAmodelissuitableforsequenceswhosePSDwithvalesandpeaks Wold sdecompositiontheoremAnyreal valuedstationaryrandomsequencex n canbedecomposedas whereu n andv n areuncorrelated Theu n isdeterministicandcanbeexactlydescribedbyalinearcombinationofitsownpast Itissometimesignoredinpractice Thev n isastationaryMAsequenceoftenwithfiniteorder EachoftheMA ARandARMAmodelsisuniversalandanyofthesethreemodelscanbearbitrarilyconvertedfromonetoanother oftenwithinfiniteorder 1 8TheIntroductiontoStatisticalEstimationTheory Estimation StatisticalSignalProcessingEstimationisthecentralprobleminrandomsignalprocessingAfterestimation thesignalsorparameterscanbetreatedasdeterministiconesAnexampleofcommunication Transmitter Receiver Noise Deterministicsignal Encoding Estimating Decoding Randomsignal bothofthesignalandnoisearerandom Deterministicsignal EstimationModelThegeneralstatisticalestimationmodel Parameterorstatespace unknown Observationspace Parameterorstateestimation Probabi listicmapping Estima tionrule Observationmodel Predictivemodel Systemnoiseprocess Observationnoiseprocess Randomsignalanditsobservationmodel Excitationprocess Parameterprocess Estimatingmethods estimators Knownsystemandobservationnoisemodels Estimationmodel Observationsfromtime0 k Theestimationofparameterorstateatk Iff isalinearfunction thentheestimatoriscalledalinearestimator TwoClassesofEstimationProblemsParameterestimationSignalmodelestimation estimatingthemodelofrandomsignalornoise suchasthenumericalcharacteristicestimation PSDestimationSystemmodelestimation systemidentification estimatingthemodelofthesystemwitharandomsignalinput Stateestimation waveestimation Estimatingstate wave basedonobservations alsoreferredasfiltering suchasWienerfilterandKalmanfilterFilteringproblemPredictionproblemSmoothingproblem BayesianEstimationTheoreticalbasis Bayes ruleCostfunctionandriskfunctionCostfunctionThecostwillbepaidwhentheestimationiswhileitstruevalueisRiskfunction theaveragecostwillbepaidforwiththeobservations Bayesianestimation theestimationwithminimumriskfunctionBayesianestimationisageneralframeworkfortheformulationofstatisticalinferenceproblems SomeEstimatorsMaximumaposteriori MAP estimation theestimationwithmaximum Maximum likelihood ML estimation theestimationthatmaximizesthelikelihoodfunction itcorrespondstotheMAPestimationwithuniformlydistributed i e thepriorPDFof isTherefore Forcaseswheretheisunknown theMMSEestimationcanbeobtainedby Minimummeansquareerror MMSE estimation PerformanceMeasuresandDesirablePropertiesofEstimatorsPerformancemeasuresExpectedvalueBiasCovariancematrix DesirablepropertiesUnbiasedestimatorAnestimatorisasymptoticallyunbiasedifEfficientestimator anunbiasedestimatorof isefficientthanotherunbiasedestimatorsifConsistentestimator anestimatorisconsistentifforany 0 i e theestimationerrorisreducedgraduallyalongwiththeincrementofsamples TheoremforthejudgmentofconsistenceIftheestimationof satisfiesThenisaconsistentestimationof Cramer RaoinequationTheCramer Raolowerboundonthevarianceofestimator MostefficientestimatorAnunbiasedestimatorthatachievestheCramer Raolowerboundiscalledtheminimumvariance orthemostefficient estimator i e amostefficientestimationfor ihas 1 9TheEstimationoftheStatisticsofErgodicStationaryRandomSequence EstimatorforMeanValueMLestimatorwithsamplexi i 0 1 N 1 Gaussianprocessisoftenassumed PerformanceBiashenceisanunbiasedestimator Variance Ifxiandxjareuncorrelatedfori j i e thenwhenN henceisaconsistentestimator Ifxiandxjarecorrelatedfori j thenwhere EstimatorforVarianceMLestimatorwithsamplexi i 0 1 N 1 Gaussianprocessisoftenassumed Suchaestimationisunbiasedandconsiste

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论