等比数列前n项和导学案.doc_第1页
等比数列前n项和导学案.doc_第2页
等比数列前n项和导学案.doc_第3页
等比数列前n项和导学案.doc_第4页
等比数列前n项和导学案.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.等比数列前n项和导学案【学习要求】1 掌握等比数列前n项公式;(重点)2 等比数列前n项公式的推导方法;(难点)2会用等比数列前n项和公式解决一些简单问题(拓展)【知识要点】1等比数列前n项和公式:(1)公式:Sn.(2)注意:应用该公式时,一定不要忽略q1的情况2若an是等比数列,且公比q1,则前n项和Sn(1qn)A(qn1)其中A .3等比数列1,x,x2,x3,的前n项和Sn为()A B C D【问题探究】国际象棋起源于古代印度,相传有位数学家带着画有64个方格的木盘,和32个雕刻成六种立体形状,分涂黑白两色的木制小玩具,去见波斯国王并向国王介绍这种游戏的玩法国王对这种新奇的游戏很快就产生了浓厚的兴趣,一天到晚兴致勃勃地要那位数学家或者大臣陪他玩高兴之余,他便问那位数学家,作为对他忠心的奖赏,他需要得到什么赏赐呢?数学家开口说道:“请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的2倍,直到最后一个格子第64格放满为止,这样我就十分满足了”“好吧!”国王挥挥手,慷慨地答应了数学家的这个谦卑的请求国王觉得,这个要求太低了,问他:“你怎么只要这么一点东西呢?”数学家笑着恳求道:“陛下还是叫管理国家粮仓的大臣算一算!”第二天,管理粮仓的大臣满面愁容地向国王报告了一个数字,国王大吃一惊:“我的天!我哪来这么多的麦子?”这个玩具也随着这个故事传遍全世界,这就是今日的国际象棋假定一千粒麦的质量为40 g,那么,数学家要求的麦粒数的总质量究竟是多少呢?(将超过7 000亿吨)这实际上是求数列1,2,4,263的和据查,目前世界年度小麦产量约6亿吨,显然国王无法满足数学家的要求这个传说中的计算是一个等比数列的求和问题,那么等比数列的求和公式是怎样的呢?怎样的等比数列才能应用这个公式呢?这一节我们就来学习等比数列的求和公式探究点一等比数列前n项和公式的推导探究1阅读教材后,完成下面等比数列前n项和公式的推导过程设等比数列a1,a2,a3,an,它的前n项和Sna1a2a3an,由等比数列的通项公式可将Sn写成:Sna1a1qa1q2a1qn1.则qSn . 由得:(1q)Sn .当q1时,Sn .当q1时,由于a1a2an,所以Sn .综上所述,Sn当q1时,因为ana1qn1.所以Sn可以用a1,q,an表示为Sn探究2下面提供了两种推导等比数列前n项和公式的方法请你补充完整方法一由等比数列的定义知:q.当q1时,由等比性质得:q,即 q.故Sn .当q1时,易知Sn .方法二由Sna1a2a3an得:Sna1a1qa2qan1qa1q a1q 从而得(1q)Sn .当q1时,Sn ;当q1时,Snna1.探究点二错位相减法求和问题教材中推导等比数列前n项和的方法叫错位相减法这种求和方法是我们应该掌握的重要方法之一,这种方法的适用范围可以拓展到一个等差数列an与一个等比数列bn对应项之积构成的新数列求和下面是利用错位相减法求数列前n项和的步骤和过程,请你补充完整设Sn,Sn ,SnSn ,即Sn .Sn .【典型例题】例1 在等比数列an中,a1a10,a4 + a6,求a4和S5.例2 在等比数列an中,S3,S6,求an.小结涉及等比数列前n项和时,要先判断q1是否成立,防止因漏掉q1而出错跟踪训练1设等比数列an的前n项和为Sn,若S3S62S9,求数列的公比q.例3 求和:Snx2x23x3nxn (x0)小结一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法跟踪训练3求数列1,3a,5a2,7a3,(2n1)an1的前n项和【当堂检测】1设数列(1)n的前n项和为Sn,则Sn等于()A B C D2等比数列an的各项都是正数,若a181,a516,则它的前5项的和是 ()A179 B211 C243 D2753在等比数列an中,已知a3,S3,则a1_.4求和:121222323n2n_【课堂小结】1在等比数列的通项公式和前n项和公式中,共涉及五个量:a1,an,n,q,Sn,其中首项a1和公比q为基本量,且“知三求二”2前n项和公式的应用中,注意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论