免费预览已结束,剩余93页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter10Thez Transform 罗欣UESTC 2012 2013 1 Thez Transform Anothertransform anyend Motivation analogoustoLTinCTSo thedefinitionandpropertiesofthez TransformcloselyparallelthoseoftheLaplaceTransformPayattentiontotherelationanddifferencebetweenLTandzT Contents Thez Transform bilateralandunilateral andtheinversez transformTheRegionofConvergenceforthezTPropertiesofthez TransformAnalysisDTLTIsystemusingzT Review 10 1Thez Transform assumingitconverges Definition The Bilateral z Transform Whenz ej unitmagnitude H ej correspondstotheFTofh n Whenz rej complex H z correspondstothezTofh t RelationshipbetweenDTFTandzT SimilartoFTandLT Unitcircle r 1 intheROC DTFTX ej exists x n r n ROC z rej atwhich dependsonlyonr z justliketheROCins planeonlydependsonRe s RelationshipbetweenLTandZT If andsampledsignal suppose Wecanget 1 2 1 2 Then z transformasDTversionofLaplacetransformwithz esT s plane z planerelationship j axisins plane s j z esT 1 aunitcircleinz planeLHPins plane Re s 0 z esT 1 outsidethe z 1circle Specialcase Re s z Averticallineins plane Re s constant esT constant acircleinz plane z esT Example10 1 Specially TheROCofsignalsinexample10 1 right sidedsignal unitcircle ROCoutside z 1unstable include z 1stable ROCoutside z 1unstable include z 1stable Example10 2 TheROCofExample10 2 aleft sidedsignal 0 a 1 z plane ROCinclude z 1stable inside z 1unstable Example TheROCistheentirez plane Example10 3 Example10 4 Rationalz Transforms x n linearcombinationofDTexponentials X z isrational polynomialsinz characterized exceptforaprefactor byitspolesandzeros sometimes itisconvenientforX z tobeexpressedintermsofpolynomialsinz 1 n 0 x n 0 Property1 TheROCofX z consistsofaringinthez planecenteredabouttheorigin Property2 theROCdoesnotcontainanypoles 10 2TheRegionofConvergenceforz Transform equivalenttoaverticalstripinthes plane sameasinLT z plane Property3 Ifx n isoffiniteduration thentheROCistheentirez plane exceptpossiblyz 0and orz Example z 1 ROC z 0 ROC z CTcounterpart Property4 Ifx n isrightsided andifthecircle z r0isintheROC thenallfinitevaluesofzforwhich z r0willalsointheROC z plane TheROCofaright sidedsignal Prove r0 convergesslowerthan Property5 Ifx n isleftsided andifthecircle z r0isintheROC thenallvaluesofzforwhich0 z r0willalsointheROC TheROCofaleft sidedsignal Property6 Ifx n istwosided andifthecircle z r0isintheROC thentheROCwillconsistofaringinthez planethatincludesthecircle z r0 Normally r1 z r2 r1 r2 z plane Quiz WhattypesofsignalsdothefollowingROCcorrespondto right sided left sided two sided Example10 6 or ROC zeros Then poles z 0 N 1 storder z a Note iscancelled z plane Example10 7 Clearly ROCdoesnotexistifb 1 Noz transformforb n Property7 IftheztransformX z ofx n isrational thenitsROCisboundedbypolesorextendstoinfinity Inaddition nopolesofX z arecontainedintheROC Property8 Ifthez transformX z ofx n isrational ifx n isrightsided thentheROCistheregioninthez planeoutsidetheoutmostpolei e outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofX z Furthermore ifx n iscausal thentheROCalsoincludesz Property9 Ifthez transformX z ofx n isrational ifx n isleftsided thentheROCistheregioninthez planeinsidetheinnermostnonzeropolei e insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofX z otherthananyatz 0andextendinginwardtoandpossiblyincludingz 0 inparticular ifx n isanticausal thentheROCalsoincludesz 0 Example10 8 HowmaypossibleROCsinthisFigure TherearethreepossibleROCsshowninFigurebefore ROC1 ROC2 ROC3 leftsided rightsided twosided Homework 10 210 310 610 7 From 10 3TheInverseZ Transform So Let Integrationaroundacounterclockwiseclosedcircularcontourcenteredattheoriginandwithradiusr Thecalculationforinversez Transform 1 Integrationofcomplexfunctionbyequation 2 ComputebyPFE PartialFractionExpansion 3 power seriesexpansion PartialFractionExpansionofrationalX z Normally TheROCisoutsidez aitheinverseZTis TheROCisinsidez aitheinverseZTis Example10 9 Then wehaveknown So Example10 10thesameX z inexample10 9 ROC So Because When ROC Example10 12 Fromthepower seriesdefinition or Example10 13 Consider ROC1 longdivision ROC2 longdivision Homework 10 910 1010 24 10 4GeometricEvaluationofTheFTFromthePole zeroPlot lowpass highpass bandpass bandstop all pass Examplefirstordersystems Examplesecondordersystems 0 r 0 95 r 0 75 10 5 1Linearity R1 R2 R1 R2 If Then Note R1 R2maybelargerthanR1orR2 10 5ThePropertiesofZ Transform 10 5 2TimeShifting R If R exceptthepossibleadditionordeletionoftheoriginorinfinity Then Example Then From 10 5 3Scalinginz Domain R If Then z0 R Specially R R if 10 5 4TimeReversal R If 1 R Then Example Then and From 10 5 5TimeExpansion R If R Then 10 5 6Conjugate R If R Then Note Ifx n isreal X z X z ThusifX z hasapole orzero atz z0 itmusthaveapole orzero atthecomplexconjugatepointz z0 10 5 7TheConvolutionProperty R1 R2 If Then Note ifR1 R2 isnotexisted R1 R2 Example R If Then R z 1 10 5 8Differentiationinthez Domain R If R Then Example Then From 10 5 9TheInitial andFinal ValueTheorems Ifx n 0forn 0 ItszTX z Then ROC z r1 TheROCof z 1 X z contains z 1 10 6SomeZTPairs Page776Table10 2 Example Wecanget notexist Homework 10 1110 1610 1710 31 ConsideraLTIsystem 10 7AnalysisandCharacterizationofLTIsystemsUsingZT 10 7 1Causality 1 Acausalsystem z r1 ROC 2 Forrational ROC includinginfinity exteriorofacircle a exteriorofacircleoutsidetheoutmostpole r1 z r1 b TheorderofthenumeratorN z cannotbegreaterthantheorderoftheD z denominator Acausalsystem Example10 20 notcausalsystem Example10 21 causalsystem ROC 10 7 2Stability 1 Astablesystem z 1 theunitcircle 2 Acausalstablesystemwithrational Allpolesliesinsidetheunitcircleofz plane ROC Includes Example10 22 24Readbyyourself 10 7 3LTISystemsCharacterizedbyLinearConstant CoefficientDifferenceEquations Z transform rational Usually apracticalsystemiscausalandstable Example10 25 ROC1 Wecanget ROC2 10 7 4ExamplesRelatingSystemBehaviortotheSystemFunction Example10 26 SupposethatwearegiventhefollowinginformationaboutanLTIsystem 1 2 DeterminethesystemfunctionH z Solution And So For ROC Then Example10 27astable causalsystem H z rational containsapolez 1 2andazerosomewhereontheunitcircle Otherzerosandpolesareunknown Whethercanwedefinitelysaythatitistrueorfalseeachoffollowingstatements a convergence b forsomewhere T T c h n hasfiniteduration d h n isreal F Insufficientinformation T e istheimpulseresponseofastablesystem 10 8 1SystemFunctionsforInterconnectionsofLTISystems Parallel Series cascade 10 8SystemFunctionAlgebraandBlockDiagramRepresentations Feed back Basicelements adder unitdelay multiplicationbyacoefficient 10 8 2BlockDiagramRepresentationforcausalLTISystemsDescribedbyDifferenceEquationsandRationalSystemFunctions Example10 28 Let Th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年鹤壁辅警协警招聘考试真题及答案详解(名师系列)
- 2025年芜湖辅警协警招聘考试真题及一套参考答案详解
- 2025年潼南县辅警招聘考试真题附答案详解(黄金题型)
- 2025年金华辅警招聘考试题库及完整答案详解1套
- 2025年肇庆辅警招聘考试题库含答案详解(培优a卷)
- 2025年深圳辅警招聘考试题库及答案详解(新)
- 2025年菏泽辅警招聘考试题库及答案详解(真题汇编)
- 2025年潼南县辅警招聘考试真题参考答案详解
- 2025年芜湖辅警招聘考试真题附答案详解(综合卷)
- 2025年锡林郭勒盟辅警招聘考试题库含答案详解(完整版)
- 本科护理系毕业论文
- (贵州)贵阳市、铜仁市2026届高三年级9月摸底考试化学(含答案)
- 外研版(三起)(2024)四年级上册英语 Unit 5 Lets go!单元整体教学设计(共5课时)
- GPS的课件教学课件
- 检验科标本接收与处理操作规程
- GB/T 43683.3-2025水轮发电机组安装程序与公差导则第3部分:立式混流式水轮机或水泵水轮机
- 2025《煤矿安全规程》新旧对照专题培训
- 劳模精神教育
- 小学体育家长会课件
- 糖尿病健康教育手册
- 桥梁养护工程师培训课件
评论
0/150
提交评论