免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
压轴大题突破练函数与导数(一)1已知f(x)x3ax2a2x2.(1)若a1,求曲线yf(x)在点(1,f(1)处的切线方程;(2)若a0,求函数f(x)的单调区间;(3)若不等式2xln xf(x)a21恒成立,求实数a的取值范围解(1)a1,f(x)x3x2x2,f(x)3x22x1,kf(1)4,又f(1)3,切点坐标为(1,3),所求切线方程为y34(x1),即4xy10.(2)f(x)3x22axa2(xa)(3xa),由f(x)0得xa或x.当a0时,由f(x)0,得ax0,得x,此时f(x)的单调递减区间为(a,),单调递增区间为(,a)和(,)当a0时,由f(x)0,得x0,得xa,此时f(x)的单调递减区间为(,a),单调递增区间为(,)和(a,)综上:当a0时,f(x)的单调递减区间为(a,),单调递增区间为(,a)和(,)当a0时,f(x)的单调递减区间为(,a),单调递增区间为(,)和(a,)(3)依题意x(0,),不等式2xln xf(x)a21恒成立,等价于2xln x3x22ax1在(0,)上恒成立,可得aln xx在(0,)上恒成立,设h(x)ln x,则h(x).令h(x)0,得x1,x(舍),当0x0;当x1时,h(x)0,因此h(x)在0,1上是增函数,故h(x)h(0)0,所以f(x)1x,x0,1要证x0,1时,(1x)e2x,只需证明exx1.记K(x)exx1,则K(x)ex1,当x(0,1)时,K(x)0,因此K(x)在0,1上是增函数,故K(x)K(0)0.所以f(x),x0,1综上,1xf(x),x0,1(2)解f(x)g(x)(1x)e2x(ax12xcos x)1xax12xcos xx(a12cos x)(由(1)知)故G(x)2cos x,则G(x)x2sin x.记H(x)x2sin x,则H(x)12cos x,当x(0,1)时,H(x)0,于是G(x)在0,1上是减函数从而当x(0,1)时,G(x)3时,f(x)g(x)在0,1上不恒成立f(x)g(x)1ax2xcos xax2xcos xx(a2cos x)(由(1)知)记I(x)a2cos xaG(x),则I(x)G(x),当x(0,1)时,I(x)3时,a30,所以存在x0(0,1),使得I(x0)0,此时f(x0)0.设两曲线yf(x),yg(x)有公共点,且在该点处的切线相同(1)用a表示b,并求b的最大值;(2)求证:f(x)g(x)(1)解f(x)x2a,g(x),由题意知f(x0)g(x0),f(x0)g(x0),即由x02a,得x0a或x03a(舍去)即有ba22a23a2ln aa23a2ln a.令h(t)t23t2ln t(t0),则h(t)2t(13ln t)于是当t(13ln t)0,即0t0;当t(13ln t)e 时,h(t)0),则F(x)x2a(x0)故F(x)在(0,a)上为减函数,在(a,)上为增函数于是F(x)在(0,)上的最小值是F(a)F(x0)f(x0)g(x0)0.故当x0时,有f(x)g(x)0,即当x0时,f(x)g(x)4已知f(x)x23x1,g(x)x.(1)a2时,求yf(x)和yg(x)的公共点个数;(2)a为何值时,yf(x)和yg(x)的公共点个数恰为两个解(1)由得x23x1x,整理得x3x2x20(x1)令yx3x2x2,求导得y3x22x1,令y0,得x11,x2,故得极值点分别在1和处取得,且极大值、极小值都是负值故公共点只有一个(2)由得x23x1x,整理得ax3x2x(x1),令h(x)x3x2x,联立对h(x)求导可以得到极值点分别在1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京小汤山医院面向应届毕业生(含社会人员)招聘15人考试笔试备考试题及答案解析
- 2025云南玉溪市江川区农业农村局招聘公益性岗位工作人员2人考试笔试参考题库附答案解析
- 2025重庆水务集团股份有限公司招聘64人考试笔试参考题库附答案解析
- 2025广西国际博览事务局招聘急需紧缺高层次人才1人笔试考试参考试题及答案解析
- 2025广东东莞市塘厦中学编外生物教师招聘1人笔试考试备考题库及答案解析
- 2025福建福州市罗源县垃圾分类办公室招聘1人考试笔试备考试题及答案解析
- 2025陕西延安市甘泉县事业单位定向招聘大学生退役士兵1人笔试考试参考试题及答案解析
- 2025年云南康旅职业培训学校有限公司招聘(1人)笔试考试备考试题及答案解析
- 2025吉林白城通榆县人力资源和社会保障局度第五批招聘公益性岗位人员补充考试笔试备考试题及答案解析
- 2026中国储备粮管理集团有限公司云南分公司招聘10人笔试考试参考题库及答案解析
- 2026版高中汉水丑生生物-第一章第一节分离定律
- 《公差配合与技术测量》课件-第2章 第3部分(配合及线性尺寸的一般公差)
- 科研成本管理办法
- 2025广西公需科目培训考试答案(90分)一区两地一园一通道建设人工智能时代的机遇与挑战
- 社区卫生服务中心远程医疗服务规范
- 燕山大学《Python语言编程与工程实践》2023-2024学年第一学期期末试卷
- 部编版四年级下册语文思政教育融合计划
- 2025-2030年中国杀线虫剂行业市场现状供需分析及投资评估规划分析研究报告
- 登高证考试题库及答案
- 腾讯微信协议书
- 铁路标准化规范化建设
评论
0/150
提交评论