




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 6 直线的一般式方程 本资料为 WoRD 文档,请点击下载地址下载全文下载地址 直线的一般式方程 (一)教学目标 1知识与技能 ( 1)明确直线方程一般式的形式特征; ( 2)会把直线方程的一般式化为斜截式,进而求斜率和截距; ( 3)会把直线方程的点斜式、两点式化为一般式 . 2过程与方法 学会用分类讨论的思想方法解决问题 . 3情态与价值观 ( 1)认识事物之间的普遍联系与相互转化; ( 2)用联系的观点看问题 . (二)教学重点、难点: 1重点:直线方程的一般式; 2难点 :对直线方程一般式的理解与应用 . (三)教学设想 教学环节教学内容师生互动设计意图 引入课题 形成概念 1( 1)平面直角坐标系中的每一条直线都可以用一个关于2 / 6 x, y 的二元一次方程表示吗? ( 2)每一个关于 x, y 的二元一次方程 Ax+By+c=0(A,B 不同时为 0)都表示一条直线吗 ?教师引导学生用分类讨论的方法思考探究问题 (1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程 .对于问题 (2),教师引导学生理解要判断某一个方程是否表示一条直线 ,只需看这个方程是否可以转化为直线方程的 某种形式 .为此要对 B 分类讨论,即当 B0 时和当 B=0时两种情形进行变形 .然后由学生去变形判断,得出结论: 关于 x, y 的二元一次方程,它都表示一条直线 . 教师概括指出:由于任何一条直线都可以用一个关于 x, y的二元一次方程表示;同时,任何一个关于 x, y 的二元一次方程都表示一条直线 . 我们把关于 x, y 的二元一次方程 Ax+By+c=0(A,B 不同为 0)叫做直线的一般式方程,简称一般式 (generalform).使学生理解直线和二元一次方程的关系 . 概念深化 2直线方程的一般式与其他几种形式的直线方程相比,它 有什么优点?学生通过相比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与 x 轴垂直的直线 .使学生理解直线方程的一般式的与其他形式的不同点 . 3 / 6 3在方程 Ax+By+c=0 中, A, B, c 为何值时,方程表示的直线 ( 1)平行于 x 轴;( 2)平行于 y 轴;( 3)与 x 轴重合;( 4)与 y 重合 .教师引导学生回顾前面所学过的与 x 轴平行和重合,与 y 轴平行和重合的直线方程的形式 .然后由学生自主探索得到问题的答案 .使学生理解二元一次 方程的系数和常数项对直线的位置的影响 . 应用举例 4例 5 已知直线经过点 A(6, 4),斜率为,求直线的点斜式和一般式方程 .学生独立完成 .然后教师检查、评价、反馈 .指出:对于直线方程的一般式,一般作如下约定:一般按含 x 项、含 y 项、常数项顺序排列; x 项的系数为正; x, y 的系数和常数项一般不出现分数;无特殊要求时,求直线方程的结果写成一般式 .使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点 . 5例 6 把直线 l 的一般式方程 x 2y+6=0化成斜截式,求出直线 l的斜率以及它在 x 轴与 y 轴上的截距,并画出图形 .先由学生思考解答,并让一个学生上黑板板书 .然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在 y轴上4 / 6 的截距 .求直线与 x 轴的截距,即求直线与 x 轴交点的横坐标,为此可在方程中令 y=0,解出 x 值,即为与直线与 x 轴的截距 . 在直角坐标系中画直线时,通常找出直线下两个坐标轴的交点 . 例 6 解:将直线 l 的一般式方程化成斜截式 y=x+3. 因此,直线 l 的斜率 k=,它在 y 轴上的截距是 3.在直线 l的方程 x 2y+6=0中,令 y=0,得 x= 6, 即直线 l 在 x 轴上的截距是 6. 由上面可得直线 l 与 x 轴、 y 轴的交点分别为 A( 6, 0),B(0, 3), 过点 A, B 作直线,就得直线 l 的图形 . 使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法 . 6二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?学生阅读教材第 105 页,从中获得对问题的理解 .使学生进一步理解二元一次方程与直线的关系,体会直角坐标系把直线与方程联系起来 . 7课堂练习 第 105 练习第 2 题和第 3( 2)学生独立完成,教师检查、评价 .巩固所学知识和方法 . 5 / 6 归纳总结 8小结( 1)请学生写出直线方程常见的几种形式,并说明它们之间的关系 . ( 2)比较各种直线方程的形式特点和适用范围 . ( 3)求直线方程应具有多少个条件? ( 4)学习本节用到了哪些数学思想方法?使学生对直线方程的理解有一个整体的认识 . 课后作业布置作业 见习案的第 3 课时 .学生课后独立思考完成 .巩固课堂上所学的知识和方法 . 备选例题 例 1 已知直线 mx+ny+12=0 在 x 轴, y 轴上的截距分别是 3和 4,求 m, n. 解法一:将方程 mx+ny+12=0 化为截距式得:, 解法二:由截距意义知,直线经过 A( 3, 0)和 B(0,4)两点, 例 2 已知 A(2, 2)和直线 l: 3x+4y 20=0求: ( 1)过点 A 和直线 l 平行的直线方程;( 2)过点 A 和直线l 垂直的直线方程 【解析】( 1)将与 l 平行的直线方程设为 3x+4y+c1=0,又过 A(2, 2), 所以 32+42+c1=0 ,所以 c1= 14. 6 / 6 所求直线方程为: 3x+4y 14=0. ( 2)将与 l 垂直的直线方程设为 4x 3y+c2=0,又过 A(2,2), 所以 32+42 +c2=0,所以 c2= 2 所求直线方程为: 4 3 2=0. 例 3 设直线 l 的方程为 (m2 2m 3)x+(2m2+m 1)y=2m 6,根据下列条件分别确定实数 m 的值 . (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品票据凭证管理制度
- 药品销售订单管理制度
- 药店公司着装管理制度
- 药店柜台进出管理制度
- 菌棒接种车间管理制度
- 设备参数更改管理制度
- 设备定岗定机管理制度
- 设备标识标牌管理制度
- 设备生产进度管理制度
- 设备缺陷统计管理制度
- 2022年盐城市大丰区事业单位考试真题及答案
- 2017年福州市初中毕业班质量检测英语试卷及答案
- 性科学与生殖健康智慧树知到答案章节测试2023年武汉科技大学
- WS/T 227-2002临床检验操作规程编写要求
- GB/T 9254.1-2021信息技术设备、多媒体设备和接收机电磁兼容第1部分: 发射要求
- GB/T 40734-2021焊缝无损检测相控阵超声检测验收等级
- GB/T 24821-2009餐桌餐椅
- GB/T 18907-2002透射电子显微镜选区电子衍射分析方法
- GB/T 16432-2016康复辅助器具分类和术语
- GB 6245-2006消防泵
- 清洁消毒记录
评论
0/150
提交评论