




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第10章 模态分析 1 基本有限元方程 模态分析基本有限元方程 M 和 K 分别为结构系统的质量矩阵和刚度矩阵 u 和分别为节点位移与加速度 解为如下的简谐运动 其中 为模态形状 为圆频率 等价为特征方程的非0解 2 有限元分析中 矩阵 K 和 M 实的对称矩阵 它们满足正交性 即 mi称为模态质量 ki称为模态刚度 fi iTF t 称为模态力 i 称为系统第I阶模态 i为系统第I阶固有频率 3 质量 质量矩阵 质量矩阵分为 集中质量矩阵 仅存在非零对角元素 耦合质量矩阵 存在非零非对角元素 MSC NASTRAN中 单元质量矩阵计算方法有两种 集中质量公式 与耦合质量公式以下图所示杆单元为例 4 L 长度 A 面积 J 扭转常数 E 扬氏模量 质量密度 IP 极惯性矩 1 4 自由度CRQD单元集中质量矩阵为 CRQD单元的耦合质量矩阵为 NASTRAN中 单元质量阵类型由用户选择 缺省值为集中质量矩阵 当用户需采用耦合质量阵时 在模型数据中加入参数卡PARAM COUPMASS 1 5 质量引入质量数据基本方法 1 通过材料性质卡 如MAT1 中质量密度 RHO 附加给结构单元2 单位长度或单位面积面上非结构质量 如地板载荷和绝热材料 用单元的性质卡 如PSHELL卡 中的非结构质量项 NSM 引入3 结点质量用CONM1 CONM2和CMASSi数据卡定义4 CONM1定义6 6耦合质量矩阵 CONM2定义结点集中质量 CMASSi定义标量质量 6 质量单位 1 NASTRAN中 不要求确定单位 但各物理量单位要保持一致质量单位可为 磅 秒2 英寸 在英寸 磅 秒系统 或千克 秒2 米 在米 牛顿 秒系统 2 以重量单位输入质量数据 如密度 可用参数PARAM WTMASS V1将重量单位变为质量单位 V1为变换系数 3 如用英制单位 以RHO 0 3磅 英寸3输入重量密度 用参数PARAM WTMASS 0 002588将重量密度化为质量密度 这里重力加速度g 386 4英寸 秒2 7 特征值解法求解特征方程 MSC NASTRAN提供三类解法 跟踪法 Trackingmethod 变换法 Tromsformationmethod 兰索士法 Lamczosmethod 跟踪法1 对仅求几个特征值 或固有频率 问题有效2 对求解大型稀疏质量和刚度阵的大型特征值问题有效3 MSC NASTRAN中 提供两种解法 即为逆幂法 INV 和移位逆幂法 SINV 4 逆幂法和移位逆幂法均用模型数据卡EIGR定义 用情况控制指令METHOD选取 8 变换法1 对于维数小 元素满的矩阵 且需求全部或大部分特征值问题有效2 MSC NASTRAN提供变换法有 吉文斯 Givens 法 GIV 修正吉文斯法 MGIV 郝斯厚德 HOU 法和修正郝斯厚德 MHOU 法3 吉文斯 GIV 法和郝斯厚德 HOU 法要求 M 阵正定 修正吉文斯法 MGIV 与修正郝斯厚德法 MHOU 允许 M 奇异 从而可求解刚体模态 4 变换法用模型数据卡EIGR描述 用情况控制指令METHOD选取 9 兰索士 Lanczos 法1 兰索士 Lanczos 法是将跟踪法和变换组合的新的特征值解法2 对非常大的稀疏矩阵的几个特征值问题最有效3 兰索士法用模型数据卡EIGRL描述 用情况控制指令METHOD选取4 兰索士法是首先推荐的 10 特征值方法比较 11 输入文件说明 执行控制模态分析解法流程有三条 SOL3SOL63SOL103SOL3为老固定流程 SOL63为老模态超单元分析流程 SOL103 包含敏度分析和自动再起动超单元分析功能的结构模态分析新流程 一般推荐使用SOL103流程 情况控制对模态分析 必不可少的情况控制指令METHOD SID用于选取特征值解方 SID为模型数据卡EIGR或EIGRL中集识别号 12 模型数据1 定义坐标系统 结构几何 有限单元 材料特性 约束条件等与静力分析相同2 特征值问题解法指定卡 EIGR EIGRL 3 EIGR卡定义跟踪法和变换法两类特征值解法 格式 13 14 注意事项 1 EIGR卡必须由情况控制指令METHOD SID来选取2 F1和F2的单位为赫兹 HZ 3 继序卡可以省略 此时特征向量正则化为对质量矩阵正则化4 使用METHOD SINV 时 若F2为空白 则只计算出一个大于F1的特征根 15 EIGRL卡是专门定义兰索士法的模型数据卡 它的格式如下 16 注意事项 1 EIGRL卡必须由情况控制指令METHOD SID选取2 在模态分析时 V1与V2的单位为HZ 在屈曲分析时 则为特征值 3 所求得的特征根由小至大排列 利用V1 V2和ND三个参数可以控制求解范围 如下表所示 17 例子1 图为被约束两自由度模型 包括两个弹簧 两个集中质量 两集中质量沿y方向移动 使用正则模态分析 SOL103 用自动选择Householder方法或改进Householder方法 EIGR卡中的METHOD AHOU 特征向量用最大法进行正则化 EIGR卡中的NORM MAX 输入文件 18 19 输出 每个模态特征值 圆频率 rad s 自然频率 Hz 广义质量和广义刚度 对每个模态显示特征向量 单点约束力和弹簧力 20 例子2 悬臂梁模型 输入文件 21 22 输出结果 23 24 例子3 四分之一板模型 注 SS 简支边界1 2 对称和 或反对称边界 25 问题 四边简支四边形模型 该模型主要说明处理对称结构模型各种边界条件的应用 采用子情况 定义如下四种不同边界条件 l对称 反对称l反对称 对称l对称 对称l反对称 反对称采用BC情况控制指令识别多各边界条件 SPCADD模型数据卡定义所有SPC卡的组合 四分之一板输入文件 26 27 28 例子4 轿车框架模型 29 30 图示该轿车模型部分模态 模态7是整体翘曲模态 模态8是车顶塌陷模态 模态9是局部 前部 车顶模态 模态10是后车身局部模态 31 第11章 线性屈曲分析 32 屈曲 结构在载荷不再增加的情况下继续变形 丧失稳定性 基本有限元方程 有限元中 线性屈曲问题是在线性刚度矩阵加入微分刚度的影响微分刚度 应变 位移关系式中的高阶项 代表了线性近似过程 微分刚度矩阵是几何 单元类型和作用载荷的函数 33 34 总应变能等于 pa只对特定的值成立 这些值是临界屈曲载荷 35 屈曲分析步骤MSC NASTRAN 用求解序列105求解线性屈曲问题 载荷1 屈曲分析第一步是进行静力分析 形成微分 或几何 刚度矩阵2 静力分析载荷只需给出其分布 而载荷的数值大小是不重要的边界条件因对称结构最低屈曲模态不一定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022运动会致辞15篇
- 考古遗址公园建设可行性研究报告(参考范文)
- 焦炉煤气制甲醇项目实施方案
- 供水设施改造与升级实施方案(模板)
- 小学生国防教育
- 山西省大同市第一中学2023-2024学年高二上学期12月检测语文含解析
- 开关电源设计其他拓扑
- 大庆职业学院《英语读写》2023-2024学年第二学期期末试卷
- 株洲师范高等专科学校《全球健康概论》2023-2024学年第二学期期末试卷
- 梧州职业学院《工作分析与职务设计》2023-2024学年第二学期期末试卷
- 2025年陕西省高三高考三模历史试卷(含答案详解)
- 糖尿病老人护理讲课课件
- 美发技能鉴定考试模拟题与参考答案解析
- 2025沪教牛津版七年级英语下册全册培优讲义
- 书香校园读书主题班会 课件
- 课题申报书:智能教育视角下基于眼动追踪的在线学习认知模型及自适应机制研究
- 2025年度考研政治马克思主义政治经济学核心考点复习汇编
- (二模)2024~2025学年度苏锡常镇四市高三教学情况调研(二)生物试卷(含答案)
- 《康复技术》课件-胫腓骨骨折术后康复
- “童”心协力 守护健康-校园传染病防控教育
- 域名解析换编码 课件 2024-2025学年人教版(2024)初中信息科技七年级上册
评论
0/150
提交评论