




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章不等式第一节不等式的性质 考纲解读1 了解现实世界和日常生活中的不等关系 了解不等式 组 的实际背景 2 掌握不等式的性质及其应用 明确各个性质中结论成立的前提条件 理解绝对值不等式的概念和性质 知识点精讲基本性质1 两个不等式的同向合成 一律为 充分不必要条件 传递性 注意找中间量 2 同向可加性 3 同正可乘性 注意条件为正 2 一个不等式的等价变形 一律为 不含大前提 充要条件 这是不等式解法的理论依据 对称性 不等量乘正量 不等量乘负量 不等量加等量 注意条件为正 注意条件为正 题型归纳及思路提示 题型89不等式的性质 例7 1 对于实数 有下列命题 若 则 若 则 若 则 若 则 若 则 其中真命题的个数是 A 个B 个C 个D 个 分析 判断命题的真假 要紧扣不等式的性质 应注意条件与结论之间的联系 解析 中的值的正负或是否为零未知 因而判断不等关系缺乏依据 故该命题是假命题 中 由可知 又 则 故该命题是真命题 中 由 不等式两边同乘 可得 若同乘 可得易知成立 故该命题为真命题 中 由可知故有 又因为 由 同正可乘 性可知成立 故该命题为真命题 中 由已知 因为 故 又 所以 故该命题为真命题 综上所述 命题都是真命题 故选C 评注 准确记忆各性质成立的条件 是正确应用的前提 在不等式的判断中 特殊值法也是非常有效地方法 题型90比较数 式 的大小与比较法证明不等式 例7 3 在锐角中 若函数在上单调递减 则下列命题正确的是 A B C D 解析 因为在锐角三角形中有 所以 且 又函数在上单调递减 所以 故选D 题型91求取值范围 例7 4 已知且 则的取值范围是 解析 解法一 令 得 则 即由得 所以 故的取值范围是 解法二 如图所示 当直线过点时 取得最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 短视频内容创作的市场趋势
- 爱卫知识培训资料课件
- 煲汤营养知识培训内容课件
- 2025及未来5年中国雕花实心木门市场调查、数据监测研究报告
- 2025及未来5年中国液力端总成市场调查、数据监测研究报告
- 考点解析-人教版八年级上册物理机械运动《运动的描述》专题测评试卷(含答案详解)
- 2025及未来5年中国圆钢切断机市场调查、数据监测研究报告
- 焊工安全教育知识培训课件
- 达标测试人教版八年级上册物理《声现象》综合测试试题(解析版)
- 冰淇淋线下营销方案(3篇)
- 2025年北京成人本科学位英语统考年真题及答案解析
- 2023年第八届全国中小学“学宪法、讲宪法”法治知识竞赛题库及答案
- 2025年秋人教版二年级上册数学教学计划含教学进度表
- 卫生院尘肺病康复站差错事故预防及突发事件处理制度
- 石材清洗工程合同协议书
- 2022-2023学年六年级数学上册第一单元:单位“1”转化问题专项练习(含答案)
- 2025年新检测设备借用协议书
- 建筑企业用工合同(22篇)
- 《欧洲民间故事》课件
- 2025一级造价工程师《土建计量》学练一本通
- 肠造口并发症分型分级标准
评论
0/150
提交评论