第章 金融市场风险的度量ppt课件.ppt_第1页
第章 金融市场风险的度量ppt课件.ppt_第2页
第章 金融市场风险的度量ppt课件.ppt_第3页
第章 金融市场风险的度量ppt课件.ppt_第4页
第章 金融市场风险的度量ppt课件.ppt_第5页
已阅读5页,还剩177页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第3章 金融市场风险的度量 2 学习目标 通过本章学习 您可以了解或掌握 1 金融市场风险度量方法的发展与演变 2 灵敏度方法的基本原理及应用 3 波动性方法的基本原理及应用 4 VaR方法的基本原理及应用 5 基于历史模拟法的VaR计算方法 6 基于MonteCarlo模拟法的VaR计算方法 7 基于Delta Gamma灵敏度指标的VaR计算方法 8 压力试验和极值理论 3 主要内容 第一节金融市场风险度量方法的演变第二节灵敏度方法第三节波动性方法第四节VaR方法第五节基于历史模拟法的VaR计算第六节基于MonteCarlo模拟法的VaR计算第七节基于Delta Gamma灵敏度指标的VaR计算第八节压力试验第九节极值理论 4 第一节 金融市场风险度量方法的演变 5 一 名义值度量法 1 名义值度量法 NotionalAmounts 的基本思想 将资产组合的价值作为该组合的市场风险值 方法评价优点 方便简单缺点 只是粗略估计 一般会高估市场风险的大小 6 二 灵敏度方法 1 灵敏度方法 SensitivityMeasures 的基本思想可以通过基于Taylor展示式的资产组合价值随市场因子变化的二阶形式来展现 7 三 波动性方法 1 波动性方法 VolatilityMeasure 的基本思想 利用因市场风险因子变化而引起的资产组合收益的波动程度来度量资产组合的市场风险 2 波动性方法实则统计学中方差或标准差的概念在风险度量中的应用 8 四 VaR方法 1 VaR ValueatRisk 的定义 指市场处于正常波动的状态下 对应于给定的置信度水平 投资组合或资产组合在未来特定的一段时间内所遭受的最大可能损失 VaR的应用领域金融风险度量确定内部经济资本需求设定风险限额绩效评估金融监管 9 五 压力试验和极值理论 1 压力试验 StressTesting 的核心思想 通过构造 模拟一些极端情景 度量资产组合在极端情景发生时的可能损失大小 2 极值理论 ExtremeValueTheory 的核心思想 应用极值统计方法来刻画资产组合价值变化的尾部统计特征 进而估计资产组合所面临的最大可能损失 10 六 集成风险或综合风险度量 1 集成风险或综合风险的定义 在各种风险 共同作用 下金融机构所面临的整体风险 集成风险或综合风险的度量 基于Copula函数的度量方法 其基本思想和步骤简要介绍如下 1 将引致集成风险的所有不同类型的风险驱动因子组成一个联合随机向量 2 得到单个风险因子的边缘分布函数 3 引入Copula函数 利用边缘分布函数获得随机向量的联合分布函数 4 基于联合分布函数 运用VaR等方法度量集成风险 11 第二节 灵敏度方法 12 一 简单缺口模型 1 简单缺口模型 SimpleGapModel 主要考察经营者所持有的各种金融产品的缺口或净暴露情况以及市场因子变动的幅度 几个相关概念正暴露 有可能获得额外收益的金融产品的暴露 负暴露 有可能遭受损失的金融产品的暴露 净暴露 正暴露与负暴露之差的绝对值 13 一 简单缺口模型 续 简单缺口模型的评价 没有考虑期限对风险的影响 或者说没有考虑正暴露和负暴露的期限结构对风险的影响 14 二 到期日缺口模型 利用到期日缺口模型度量金融风险的基本公式 GRSG R其中 GRSG 敏感性总缺口 R 某市场因子的变动幅度 15 二 到期日缺口模型 续 评价 1 优点计算简单 便于实施 2 缺点没有考虑资产和负债所面临的市场风险 以经营者的资产负债表为基础 不能体现表外项目的市场风险 考察期的划分不可避免地存在着误差 16 三 久期 一 久期的概念债券定价的基本公式 3 2 1 2 一阶泰勒展式 3 2 2 17 三 久期 一 久期的概念 续 3 Macaulay久期由 3 2 1 式和 3 2 2 式 得Macaulay久期 3 2 4 18 三 久期 一 久期的概念 续 4 离散形式的久期公式 3 2 5 19 三 久期 一 久期的概念 续 5 调整久期或修正久期 3 2 6 20 三 久期 一 久期的概念 续 6 有效久期 EffectiveDuration 针对结构更为复杂的产品 提出有效久期的概念 定义如下 21 三 久期 续 二 久期的性质性质1零息债券的久期是其到期期限 息票债券久期的上限是相应的永久债券的久期 性质2息票债券的久期与息票率之间呈反向关系 性质3久期与贴现率之间呈反向关系 性质4债券到期日与久期之间呈正向关系 性质5债券组合的久期是该组合中各债券久期的加权平均 22 三 久期 续 三 久期的缺陷对不同期限的现金流采用了相同贴现率 这与实际常常不符 仅仅考虑了收益率曲线平移对债券价格的影响 没有考虑不同期限的贴现率变动的不同步性 仅仅考虑了债券价格变化和贴现率变化之间的线性关系 只适用于贴现率变化很小的情况 23 四 久期缺口模型 一 基本公式 3 2 9 其中 称为久期缺口 DurationGap 24 四 久期缺口模型 续 二 评价1 优点 考虑了每笔现金流量的时间价值 避免了到期日缺口模型中因时间区间划分不当而有可能带来的的误差 从而比到期日缺口模型更加精确 缺点 计算较为复杂 对小规模的金融机构可能不够经济 作为模型基础的久期概念存在一些不足 25 五 凸性 一 凸性的定义1 二阶泰勒展式 3 2 10 结合二阶泰勒展式和久期公式 得其中称为凸性 26 五 凸性 一 凸性的定义 续 3 有效凸性对于内含期权以及其他现金流不确定的利率衍生产品 可以定义有效凸性如下 27 五 凸性 续 二 凸性的性质性质1贴现率增加会使得债券价格减少的幅度比久期的线性估计值要小 而贴现率减少会使得债券价格增加的幅度比久期值估计值要大 而且凸性越大 上述效应越明显 性质2收益率和久期给定时 息票率越大 债券的凸性越大 28 五 凸性 二 凸性的性质 续 性质3通常债券的到期期限越长 债券的凸性越大 并且债券凸性增加的速度随到期期限的增加越来越快 性质4债券组合的凸性是组合内各种债券凸性的加权平均 29 六 系数和风险因子敏感系数 一 系数与资本资产定价模型1 系数的公式表示根据CAPM 在证券市场处于均衡状态时 3 2 13 其中 即为 系数 30 六 系数和风险因子敏感系数 一 系数与资本资产定价模型 续 2 系数的理解 i系数实际上反映了证券i的超额期望收益率对市场组合超额期望收益率的敏感性 当 系数取正值时 说明所考察的证券与市场组合的走势刚好一致 反之则反是 系数满足可加性 31 六 系数和风险因子敏感系数 续 二 风险因子敏感系数和套利定价模型1 风险因子敏感系数来源于Ross于1976年提出的套利定价理论 APT 2 套利定价理论的一般形式 3 2 15 其中 称为第k个风险溢价因子的风险因子敏感系数 32 七 金融衍生品的灵敏度测量 1 金融衍生品的价格F可以表示成下面的形式F F S t r 3 2 16 其中 S表示标的物资产的当前价格 t表示当前时间 r表示无风险利率 表示标的物资产价格的波动率 33 七 金融衍生品的灵敏度测量 续 2 金融衍生品定价公式的泰勒展式 3 2 17 34 七 金融衍生品的灵敏度测量 续 3 金融衍生品灵敏度指标的含义解析 35 七 金融衍生品的灵敏度测量 续 远期合约和期权的灵敏度指标 36 八 灵敏度度量法评述 主要特点 简明直观 应用方便 最适合于由单个市场风险因子驱动的金融工具且市场因子变化很小的情形 37 八 灵敏度度量法评述 续 2 不足 可靠性难以保证 难以定义受多个市场风险因子影响的资产组合的灵敏度指标 无法对不同市场因子驱动的风险大小进行横向比较 不能给出资产组合价值损失的具体数值 一阶灵敏度方法一般不考虑风险因子之间的相关性 38 第三节 波动性方法 39 一 单种资产风险的度量 假设某种金融资产收益率r为随机变量 该资产的风险可用收益率标准差 即波动系数来度量 越大说明该资产面临的市场风险越大 反之则反是 40 一 单种资产风险的度量 续 2 当无法准确知道资产收益率的概率分布时 可利用随机变量r的若干个历史样本观测值来估计r的数学期望和标准差 期望 标准差 41 二 资产组合风险的度量 一 基本思路用收益率的方差或标准差来度量资产组合的风险 二 相关的计算公式数学期望 3 3 3 方差 3 3 4 相关系数 3 3 5 42 三 特征风险 系统性风险与风险分散化 一 资产组合收益率方差令 且所有单个资产的风险相同 则可得资产组合收益率的方差为 二 讨论1 若 则 从而 2 若 则 43 四 波动性方法的优缺点评述 1 优点 含义清楚 应用也比较简单 2 缺点 对资产组合未来收益概率分布的准确估计比较困难 仅描述资产组合未来收益的波动程度 并不能说明资产组合价值变化的方向 无法给出资产组合价值变化的具体数值 44 第四节 VaR方法 45 一 VaR方法的基本概念 一 VaR的定义指市场处于正常波动的状态下 对应于给定的置信度水平 投资组合或资产组合在未来特定的一段时间内所遭受的最大可能损失 用数学语言可表示为 3 4 1 46 一 VaR方法的基本概念 续 二 VaR的基本特点 仅在市场处于正常波动的状态下才有效 无法准确度量极端情形时的风险 VaR值是一个概括性的风险度量值 VaR值具有可比性 Comparable 时间跨度越短 假定收益率服从正态分布计算的VaR值越准确 有效 置信度和持有期是影响VaR值的两个基本参数 47 一 VaR方法的基本概念 续 三 置信度和持有期的选择和设定持有期的选择和设定需考虑以下因素 1 考虑组合收益率分布的确定方式 2 考虑组合所处市场的流动性和所持组合头寸交易的频繁性 48 一 VaR方法的基本概念 三 置信度和持有期选择和设定 续 2 置信度的选择和设定需考虑以下因素 1 考虑历史数据的可得性 充分性 2 考虑VaR的用途 3 考虑比较的方便 49 二 VaR的计算 一 VaR的计算方法概括计算VaR值的核心问题是估计资产组合未来损益 P的概率分布 计算VaR的一般步骤 1 建立映射关系 2 建模 3 给出估值模型和VaR值 50 二 VaR的计算 一 VaR的计算方法概括 续 3 VaR计算方法的分类 根据 P分布确定方法划分 1 收益率映射估值法 直接应用组合中资产的投资收益率来确定 P分布 2 风险因子映射估值法 将组合价值表示成风险因子的函数 然后通过风险因子的变化来估计组合的未来损益分布 进一步分为 风险因子映射估值模拟法风险因子映射估值分析法 51 二 VaR的计算 续 二 基于收益率映射估值法的VaR计算1 绝对VaR和相对VaR的概念 1 以组合的初始值为基点考察持有期内组合的价值变化即 PA P P0 P0R 3 4 3 由此求得的VaR称为绝对VaR 记为VaRA 2 以持有期内组合的预期收益为基点考察持有期内组合的价值变化 即 PR P E P P0 R 3 4 4 由此求得的VaR称为相对VaR 记为VaRR 52 二 VaR的计算 二 基于收益率映射估值法的VaR计算 续 2 组合的投资收益率服从正态分布的日VaR计算假设初始价值为P0 日投资收益率R服从正态分布 期望收益率与波动率分别为 和 于是在置信度c下分别得到日绝对VaRA和日相对VaRR 3 4 6 3 4 7 53 二 VaR的计算 二 基于收益率映射估值法的VaR计算 续 3 组合中资产的投资收益率服从正态分布的日VaR计算假设组合由n种资产构成 组合中n种资产的日投资收益率向量服从n维正态分布 则该组合的日绝对VaRA为其中 54 二 VaR的计算 二 基于收益率映射估值法的VaR计算 续 4 关于资产组合的VaR计算资产组合的初始价值 在置信度c下资产组合的日绝对VaR和日相对VaR分别为 日绝对VaR 日相对VaR 55 二 VaR的计算 二 基于收益率映射估值法的VaR计算 续 5 关于VaR的时间加总问题 1 基本思路 当求出1单位的VaR 可直接利用时间加总公式求出持有期为 t的VaR 2 计算公式根据独立同分布随机变量和的分布特征可知 组合在 t日的投资收益率服从正态分布 于是 t日的绝对VaR和相对VaR分别为绝对VaR 相对VaR 56 二 VaR的计算 二 基于收益率映射估值法的VaR计算 续 收益率映射估值法优缺点评述优点 原理简单 尤其在正态分布假设下应用更加方便 2 缺点 组合中金融工具之间相关系数的确定常常比较困难 计算量大 正态分布的假设常常与实际中的尖峰厚尾现象不符合 57 三 边际VaR 增量VaR和成分VaR 一 边际VaR MarginalVaR 简记为M VaR 设资产组合 所谓的边际VaR是指资产组合中资产的头寸变化而导致的组合VaR的变化 即 3 3 14 58 三 边际VaR 增量VaR和成分VaR 续 二 增量VaR IncrementalVaR 简记为I VaR 假设在原来资产组合的基础上 新增加另一个资产组合 并将调整后的资产组合的VaR记为VaR w dw 于是 dw的VaR 即增量VaR被定义为I VaR dw VaR w dw VaR w 3 4 17 59 三 边际VaR 增量VaR和成分VaR 续 三 成分VaR ComponentVaR 简记为C VaR 定义若资产组合中资产i的VaR 记为 满足 则称为该资产i的成分VaR 60 三 边际VaR 增量VaR和成分VaR 三 成分VaR 续 C VaR的特性 组合中所有资产的成分VaR之和恰好等于组合的VaR 资产i的成分VaR恰好为资产i对组合VaR的贡献份额 61 三 边际VaR 增量VaR和成分VaR 三 C VaR 续 若某资产的成分VaR为负 则该资产可对冲组合其余部分的风险 且对冲量为成分VaR 当资产组合的n维收益率向量R服从n维正态分布时 资产i的成分VaR为 62 四 VaR方法的优缺点评述 1 VaR方法的优点 VaR方法可以测量不同风险因子 不同金融工具构成的复杂资产组合以及不同业务部门所面临的总体风险 VaR方法提供了一个概括性的且具有可比性的风险度量值 VaR方法能更加体现出投资组合分散化对降低风险的作用 63 四 VaR方法的优缺点评述 续 VaR方法的局限性 1 决定组合价值变化的风险因子在未来的发展变化同过去的行为一致的隐含假定与实际不符 2 正态性假设不能准确刻画资产收益率分布经常出现的尖峰 厚尾 非对称等分布特征 3 基于同样的历史数据 运用不同方法所计算的VaR值往往差异较大 4 不能准确度量金融市场处于极端情形时的风险 64 四 VaR方法的优缺点评述 续 5 可能不满足次可加性 Sub additive 6 对组合损益的尾部特征的描述并不充分 从而对风险的刻画也不完全 7 VaR方法得到的是统计意义上的结论 对个体所得结论并不确定 8 计算VaR时对历史数据的搜集 处理一般比较繁杂 而且有时还无法获得相应的历史数据 同时 计算复杂 计算量也比较大 65 第五节 基于历史模拟法的VaR计算 66 引言 1 历史模拟法 HistoricalSimulation 有时简记为HS 包括 标准历史模拟方法 StandardHistoricalSimulation 简记为SHS 加权历史模拟法 WeightedHistoricalSimulation 滤波历史模拟法 FilteredHistoricalSimulation 67 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 一 基本原理1 将各个风险因子在过去某一时期上的变化分布或变化情景准确刻画出来 作为该风险因子未来的变化分布或变化情景 2 在上述基础上通过建立风险因子与资产组合价值之间的映射表达式模拟出资产组合未来可能的损益分布 3 计算给定置信度下的VaR 68 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 续 二 一般计算步骤1 识别风险因子变量 建立证券组合价值与风险因子变量之间的映射关系 2 用历史数据模拟风险因子未来可能取值 3 计算证券组合未来价值水平或损益分布 4 基于损益分布计算置信度c下的VaR 69 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 续 三 举例1 假设某美国公司于1998年12月31日持有一份三个月后到期 以16 5百万美元交换10百万英镑的远期合约 用标准历史模拟法计算这家美国公司于1998年12月31日持有该合约在c 95 置信度下的日VaR值 70 2 定义以下符号 S 以美元表示的英镑的即期价格 K 货币远期合约中的约定价格 K 1 65 f 远期合约的市场价值 r 用年化的百分率表示的3个月的美元利率 r 用年化的百分率表示的3个月的英镑利率 合约的到期期限 92 365年 3个月的美元折现因子 3个月的英镑折现因子 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 71 分四步计算第一步确定风险因子 分别为即期汇率S 美元利率r以及英镑利率r 再建立远期合约的市场价值与上述市场风险因子之间的函数表达式 即 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 72 2 第二步 选取市场风险因子从1998年8月10日至拟考察的日期12月31日之间101个交易日的连续历史数据 并对应地计算出即期汇率S的值 见后面的表格 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 73 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 74 3 第三步计算S r和r 在1999年1月4日的100个可能取值 此时T 100 并对应计算出远期合约价值和损益值在1999年1月4日的100个可能取值 具体的计算结果见后面的表格 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 75 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 76 r 1 r 0 r 0 r 1 4 9375 4 9375 4 968 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 77 S 4 S 0 S 3 S 4 1 6637 1 60855 1 61005 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 78 第四步将远期合约在1999年1月4日的100个损益值的可能取值从大到小排列 可得到远期合约在1999年1月4日的损益分布 计算出95 置信度下的分位数为 Tc 100 95 95 则第 Tc 1 96个数值26408 2977美元 即为美国公司持有该合约在95 置信度下的日VaR值 具体结果见后面的表格 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 79 f2 f2 f0 113592 003 93581 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 80 f从大到小排列 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 81 95 置信度下的分位数 Tc 100 95 95VaR f k Tc 1 f 96 一 基于标准历史模拟法计算VaR的基本原理和实施步骤 三 举例 续 82 二 计算VaR的标准历史模拟法评述 一 优点直观 简单 便于理解 计算过程容易掌握 非参估计 减少参数估计风险和模型风险 不用假定市场风险因子未来变化的分布形式 可以处理非对称和尖峰厚尾等问题 能够处理非线性问题 原理简单而实用 所以容易与计算VaR的其他方法相融合 从而也容易被改进和推广 83 二 计算VaR的标准历史模拟法评述 续 二 不足风险因子的未来变化等同于历史数据变化的基本假设与现实不符 风险因子历史数据在未来时刻等概率出现的假设 与现实也经常不符 获取大量连续历史数据并非易事 得到的VaR值的波动性较大 稳健性较差 第三节所言有关VaR方法的一些缺陷仍然存在 84 三 计算VaR的标准历史模拟法的修正及扩展 一 时间加权历史模拟法假设风险因子在过去第t期的变化值 fi t 可能价值V t 和可能损益值 V t 在未来出现的可能性 权数 都是2 根据置信度c计算分位数时 即求满足的最大值m 于是损益分布中所对应的第m个值 V km 即为置信度c下的VaR 85 三 计算VaR的标准历史模拟法的修正及扩展 续 二 波动率加权历史模拟法根据历史数据建立风险因子时间序列模型 模拟风险因子在历史数据选用区间中的波动率以及未来时期的波动率和 用下式对历史数据权重加以调整 再选择标准历史模拟法或者时间加权历史模拟法计算VaR 86 第六节 基于MonteCarlo模拟法的VaR计算 87 一 MonteCarlo模拟法 一 基本原理与实施步骤1 解决问题时如果没有实际数据 则无法借助随机抽样统计分析方法对总体进行推断 怎么办 在美国研制原子弹的 曼哈顿计划 中 需要计算中子进入反应堆屏障的随机性运动 但无法获得实际数据 解决办法 运用计算机产生随机数 冯 诺伊曼 VonNeumann 借用赌城 MonteCarlo来为这种方法命名 88 一 MonteCarlo模拟法 一 基本原理与实施步骤 续 2 MonteCarlo模拟法的应用领域 求解确定性问题积分的数值计算 各类方程的求解等 求解随机性问题运筹学中的库存问题 随机服务系统中的排队问题 金融资产价格的变化问题等 89 3 本文通过MonteCarlo模拟法计算资产组合VaR所涉及到的有关金融问题几乎都是随机性的 求解随机性问题的MonteCarlo模拟法的成功实施主要取决于三个基本要素 用以模拟随机变量未来变化路径的随机模型的准确性 每次模拟的独立性 足够多的模拟次数 一 MonteCarlo模拟法 一 基本原理与实施步骤 续 90 一 MonteCarlo模拟法 续 二 单变量资产价格的随机模拟与随机数的产生单变量资产价格的随机模拟几何布朗运动 确定股票初始价格St 并估计出参数 和 利用计算机生成n个相互独立的标准正态随机数 代入上式递推得到股价的时间序列 得到股票价格的一条样本轨道 重复得到N条样本轨道 及股价的变化分布 91 2 单变量随机数的产生第一步基于 0 1 上均匀分布的随机数的产生借助于在计算机上设立的所谓 随机数发生器 来实现 通过迭代算法生成大量的 伪随机数 2 第二步 通过累积密度函数 或分布函数 的逆函数 把第一步产生的 0 1 上均匀分布的随机数转化为特定概率分布的随机数 一 MonteCarlo模拟法 二 单变量资产价格的随机模拟与随机数的产生 续 92 一 MonteCarlo模拟法 续 三 多变量资产价格的随机模拟与随机数的产生1 若风险因子不相关按单变量的方法分别模拟每个风险因子变量 2 若风险因子相关基于Cholesky因子分解法模拟资产价格以及产生随机数 93 二 基于MonteCarlo模拟法的计算VaR的基本步骤 识别风险因子变量 建立资产组合价值与风险因子变量之间的映射关系 对风险因子未来变化进行随机模拟 得到各个风险因子变量未来变化的一条样本轨道 利用第1步给出的映射关系计算组合价值及组合价值的变化值 不断重复第二与第三步 直至达到模拟要求的次数 基于损益分布计算置信度c下的VaR 94 三 基于MonteCarlo模拟法计算VaR的应用举例 2016年11月10日 某投资者买入10000股招商银行股票 价格为17 80元 股 请问 假定招商银行的股价变动服从几何Brown运动 请用连续型方法模拟出招商银行股价在未来两天内变化的一条样本路径 下一个交易日 在99 置信度水平下 该投资者的最大可能损失是多大 95 三 基于MonteCarlo模拟法计算VaR的应用举例 2016年11月10日 某投资者构造了一个投资组合 将100万元按50 的权重分别投资到了招商银行和新华保险这两个股票 请基于MonteCarlo模拟法分析该投资者在下一个交易日的损益情况 请问 该投资头寸的期望值是多少 在95 置信度水平下 该投资者的最大可能损失是多大 96 三 基于MonteCarlo模拟法计算VaR的应用举例 97 三 基于MonteCarlo模拟法计算VaR的应用举例 续 98 三 基于MonteCarlo模拟法计算VaR的应用举例 续 99 四 基于MonteCarlo模拟法VaR计算的评述 1 优势 1 与历史模拟法相比 该法结果更精确 可以产生大量关于风险因子未来取值的模拟样本 可以最大程度地将风险因子未来变化的各种可能情景模拟出来 不必受到历史数据在数量与质量等方面所存在的种种制约 100 四 基于MonteCarlo模拟法VaR计算的评述 续 2 是一种完全估值法 可以处理非线性 非正态问题 3 通过建立随机模型并对模型中相关参数进行估计和修正 从而使得对风险因子变化的模拟更加贴近于现实 4 可以借助计算机来完成 从而大大提高有效性和精确性 101 四 基于MonteCarlo模拟法VaR计算的评述 续 2 不足 1 依赖于随机模型以及估计模型参数的历史数据 存在模型风险和参数估计误差 2 伪随机数可能导致模拟错误和失效 3 收敛速度慢 计算效率低 计算量大 4 随机模拟次数不够多时 方差比较大 5 对小区间内变化用静态方法处理会产生相应偏差 分割数过少会大大地加剧该偏差 102 五 MonteCarlo模拟法的改进与扩展介绍 1 下文有时会根据需要将前文介绍的MonteCarlo模拟法 称为传统MonteCarlo模拟法 对传统MonteCarlo模拟法的改进和修正主要体现在三方面 降低伪随机数的集聚性 合理减少风险因子数量 以提高计算效率和收敛速度 降低样本的方差 以提高计算的准确性 引入Markov过程 以降低用静态方法处理时所产生的偏差 103 五 MonteCarlo模拟法的改进与扩展介绍 续 一 对收敛速度和计算效率的改进1 拟MonteCarlo方法 Quasi MonteCarloSimulation 1 用预先设定的确定性方法在空间中产生一些低偏差 LowDiscrepancy 的拟随机数 2 优点 能够更加均匀地分布在间隔域中 收敛速度更快 从而计算精度也更高 104 五 MonteCarlo模拟法的改进与扩展介绍 一 对收敛速度和计算效率的改进 续 2 情景MonteCarlo模拟法 Quasi MonteCarloSceneSimulation 1 先采用主成分分析方法从众多风险因子中提取少数几个主成分 再进行下一步的模拟 优点 由于各个主成分的所有可能不同组合的个数有限 因此情景MonteCarlo模拟方法会提高计算的速度和效率 105 五 MonteCarlo模拟法的改进与扩展介绍 续 二 对降低样本方差的改进1 镜像变量法 AntitheticVariables 抽取标准正态随机变量的样本 时 取其相反数 为另一个样本 2 控制变量法 ControlVariates 假设有两种金融衍生工具A和B 如果B存在着封闭的定价公式 则可以利用工具B的定价误差来对工具A的定价结果进行调整 106 3 重要抽样法 ImportanceSampling 通过变换随机样本的概率测度 以适当加大对我们所研究的问题具有重要影响的样本出现的可能性 4 分层抽样法 StratifiedSampling 为避免不能抽取到随机变量在某些取值范围内的样本 可以设法将拟要抽取的样本比较均匀地分布在随机变量的取值空间中 五 MonteCarlo模拟法的改进与扩展介绍 二 对降低样本方差的改进 续 107 5 矩匹配法 MomentMatching 在模拟生成某个分布的样本时 可以对已经生成的样本进行一个变换 使得变换之后样本的某些矩与被模拟分布理论上的矩保持一致 然后 再将变换后的样本运用到定价或者是VaR估计中去 五 MonteCarlo模拟法的改进与扩展介绍 二 对降低样本方差的改进 续 108 五 MonteCarlo模拟法的改进与扩展介绍 续 三 马尔可夫链MonteCarlo模拟法马尔可夫链 Markov链 MonteCarlo模拟法 MCMCSimulation 将Markov过程引入到传统MonteCarlo模拟法之中 从而实现动态模拟的目的 即抽样分布能够随着模拟的进行而不断改变 109 第七节 基于Delta Gamma灵敏度指标的VaR计算 110 引言 1 Delta类方法用Taylor一阶展式近似资产组合的价值2 Delta Gamma类方法用Taylor二阶展式近似资产组合的价值 111 一 基于Delta类方法的VaR计算 1 Delta类方法主要包括 Delta 正态方法Delta 加权正态方法Delta 混合正态方法Delta GARCH方法 112 一 基于Delta类方法的VaR计算 续 一 基于Delta 正态方法的VaR计算1 基本原理 资产组合的损益近似为若风险因子x x1 xn 的收益率向量服从正态分布 则资产组合的损益也近似地服从正态分布 估计出近似损益分布的均值和方差参数 基于近似损益分布计算VaR 113 一 基于Delta类方法的VaR计算 一 基于Delta 正态方法的VaR计算 续 基于Delta 正态方法计算VaR的具体步骤 1 识别风险因子变量 建立组合价值与风险因子之间的映射关系 2 估计风险因子收益率的协方差矩阵 3 计算灵敏度系数Delta 4 估计资产组合未来损益的近似分布 5 计算VaR 114 一 基于Delta类方法的VaR计算 一 基于Delta 正态方法的VaR计算 续 3 假设某美国公司于1998年12月31日持有一份三个月后到期 以16 5百万美元交换10百万英镑的远期合约 基于Delta 正态方法的VaR计算持有该远期合约在95 置信度下的VaR 1 写出远期价值和风险因子之间的函数关系 3个月的美元折现因子 3个月的英镑折现因子 115 一 基于Delta类方法的VaR计算 一 基于Delta 正态方法的VaR计算 续 2 计算远期合约在未来一天内价值变化的一阶近似式 3 估计三个风险因子收益率 S S P P 以及 P P的协方差矩阵 4 计算风险因子S P 以及P的协方差矩阵 5 根据资产组合价值对每个风险因子的Delta值计算出组合价值变化 f的标准差 6 计算得到在95 的置信度下持有该远期合约的VaR为 98 150 135 一 基于Delta类方法的VaR计算 一 基于Delta 正态方法的VaR计算 续 117 一 基于Delta类方法的VaR计算 一 基于Delta 正态方法的VaR计算 续 4 Delta 正态方法评述 1 优点 计算简单 操作方便 当风险因子变化很小时 计算误差较小 2 缺陷 不能反映非线性风险 多元正态分布假设不尽合理 使用简单移动平均方法估计收益率协方差矩阵易导致预测结果失真 历史数据长度对协方差估计的可靠性也会产生影响 118 一 基于Delta类方法的VaR计算 续 二 基于Delta 加权正态方法的VaR计算Delta 加权正态模型 又称 RiskMetrics 方法 由JPMorgan公司提出 解决Delta 正态方法采用简单移动平均方法估计协方差矩阵时容易出现失真的问题 2 基本原理 除采用对历史数据赋权重的方法估计风险因子收益率向量r的协方差矩阵 的方法外 其它原理均与Delta 正态方法相同 119 一 基于Delta类方法的VaR计算 续 三 基于Delta GARCH方法的VaR计算与Delta 正态方法 Delta 加权正态方法比较 Delta GARCH方法更擅长于刻画 金融时间序列的厚尾分布 金融时间序列的波动性聚集特征 2 基本原理 除利用GARCH模型来估计风险因子收益率向量r的协方差矩阵 外 该法的基本原理 思路和计算步骤完全类似于Delta 正态方法 120 一 基于Delta类方法的VaR计算 续 四 基于Delta EGARCH GED方法的VaR计算1 与Delta 正态方法 Delta 加权正态方法和Delta GARCH方法比较 Delta EGARCH GED方法更加擅长刻画 金融时间序列的厚尾分布 金融时间序列的波动性聚集特征 杠杆效应 2 Delta EGARCH GED方法用广义误差分布 GeneralizedErrorDistribution GED 描述具有厚尾特征的资产组合价值的未来变化 121 一 基于Delta类方法的VaR计算 续 五 Delta 混合正态模型1 Delta 混合正态模型用混合正态分布来描述风险因子收益率或者是资产组合价值变化的厚尾分布特征 122 二 基于Delta Gamma类方法的VaR计算 1 Delta Gamma类方法主要包括 Delta Gamma GARCH方法Delta Gamma Wilson方法Gamma CF方法Gamma Johnson方法 123 二 基于Delta Gamma类方法的VaR计算 一 基于Delta Gamma正态方法计算VaR1 Delta Gamma正态方法的基本原理 采用资产组合价值的变化或损益关于风险因子变化向量的二阶Talyor展式作为的近似 仍假设风险因子的收益率服从正态分布 仿照Delta 正态方法的实施步骤来进行 124 二 基于Delta Gamma类方法的VaR计算 二 其他重要的Delta Gamma类方法1 Delta Gamma GARCH方法的基本原理为 采用资产组合价值的损益关于风险因子变化向量的二阶Talyor展式作为的近似 风险因子的收益率变化服从多元GARCH模型 125 2 Delta Gamma Wilson方法的基本思路 将VaR计算归结为一个最优化问题来求解s t 其中 为标准正态分布下对应于的分位数 二 基于Delta Gamma类方法的VaR计算 二 其他重要的Delta Gamma类方法 126 3 Gamma CF方法和Gamma Johnson方法产生的主要背景 若采用资产组合价值的损益关于风险因子变化向量的二阶Talyor展式作为的近似 即使风险因子的收益率服从正态分布 也不服从正态分布 此时计算VaR就比较麻烦 二 基于Delta Gamma类方法的VaR计算 二 其他重要的Delta Gamma类方法 127 Gamma CF方法的基本思想 通过非标准正态分布的偏度和峰度对标准正态分布的分位数进行调整 从而得到自身的分位数近似计算公式 Gamma Johnson方法的基本思想 对非正态分布做一个单调变换 使得变换之后的随机变量服从标准正态分布 二 基于Delta Gamma类方法的VaR计算 二 其他重要的Delta Gamma类方法 128 三 基于Hull White正态变换方法 1 Hull White正态变换方法 最早由Hull和White 1998 提出 核心思想是 1 利用变换将风险因子收益率rit 非正态随机变量 分布函数为Git 变换为标准正态随机变量fit 2 利用Cholesky分解方法 模拟生成关于多元正态随机向量 f1t f2t fnt 的样本 129 三 基于Hull White正态变换方法 续 3 利用逆变换得到风险因子收益率随机向量 r1t r2t rnt 的样本 4 在上述样本基础上计算VaR 130 第八节 压力试验 131 引言 1 现实市场中的非正常波动或者极端波动的事件和情景时有发生 金融风险因子或金融资产价值的变化分布往往呈现出明显的 厚尾 特征 此时继续运用经典的VaR方法度量厚尾分布事件的风险将有可能产生较大的估计偏差 132 引言 续 对于厚尾分布 通常有两种理解 一种是与正态分布比较 把峰度比正态分布高的分布称为厚尾分布 包括t 分布 对数正态分布 广义误差分布 混合正态分布等 本文厚尾分布皆是这种意义的 另一种是RamazanGencay的定义 即满足的分布F x 称为厚尾分布 按该定义 上述的分布都不是厚尾的 133 3 压力试验和极值理论是目前度量厚尾分布事件风险的两种基本方法 本节介绍压力试验 下一节介绍极值理论 4 压力试验 是在模拟或构造未来可能出现的极端情景的基础上 对极端情景及其影响下的资产组合的价值变化做出评估和判断 5 压力试验的两种主要方法 1 情景分析法 2 系统化压力试验 引言 续 134 一 情景分析法 一 情景分析法是最常用的压力试验方法 主要用于评估一个或几个市场风险因子突然从当前市场情景变化到某些极端情景或事件的过程中对资产组合价值变化的影响程度 各种情景分析法的实施主要包含两个关键步骤 情景构造 情景评估 135 二 情景构造1 市场情景和极端情景 1 对影响资产组合价值P的n个市场风险因子r1 r2 rn依次赋值 得到的一个取值组合 称为一个市场情景 记为 2 对未来某个极端情景s下的n个风险因子进行评估赋值 此时的市场情景就是我们所构造的极端情景 记为 一 情景分析法 136 2 情景构造包括 典型情景构造 历史情景构造 VaR情景构造 特殊事件假定法 MonteCarlo情景构造 一 情景分析法 二 情景构造 续 137 3 典型情景构造典型情景构造是通过对市场风险因子的未来变化进行构造模拟 进而生成极端情景 又称为标准压力情景法 衍生产品政策集团 DerivativesPolicyGroup 简称DPG 针对银行业所提出的标准压力情景法已为许多银行所广泛应用 典型情景构造法的优势是可比性 一 情景分析法 二 情景构造 续 138 4 历史情景构造主要根据历史上曾发生过的极端事件来模拟 构造未来的极端情景 或者说选择历史上发生极端事件时风险因子的时间序列数据 来模拟 构造未来的极端情景 分类不考虑风险因子之间相关性的历史情景构造考虑风险因子之间相关性的历史情景构造 一 情景分析法 二 情景构造 续 139 VaR情景构造构造与持有期相对应的各个风险因子的波动性以及风险因子之间相关性的极端情景 特殊事件假定法通过设想未来可能发生的一次突发性事件 例如可能发生的自然灾害 突发性的政治事件等 对市场风险因子可能产生的影响 进而生成极端情景 一 情景分析法 二 情景构造 续 140 7 MonteCarlo模拟情景构造 1 基本思想 用MonteCarlo法生成压力情景 2 具体做法 假设市场风险因子变化服从特定分布 通过历史数据估计出分布函数中的参数 模拟生成市场风险因子变化的大量样本 根据事先确定的压力情景的判断标准 在已经生成的大量情景中 筛选出压力情景 一 情景分析法 二 情景构造 续 141 一 情景分析法 续 三 情景评估1 情景评估 对极端情景发生时资产组合价值未来的可能变化进行评估 2 情景评估的具体做法 根据资产定价理论和映射关系 得到市场极端情景rs下资产组合的价值以及资产组合的当前市场价值 前者减去后者得到极端情景发生时资产组合价值在未来的一个变化量 142 一 情景分析法 续 四 情景分析法的评价1 优点 可考察市场风险因子的极端变动的影响 VaR情景分析法还能够用来评估市场风险因子波动率和相关系数发生极端变化时对资产组合价值的可能影响 可以使得金融机构的高层和风险管理部门能较为准确地评估和把握极端事件的影响 提高风险管理策略的有效性和可靠性 143 一 情景分析法 四 情景分析法的评价 续 2 不足 压力情景的构造往往具有较大的主观性 不可能考虑到所有可能的压力情景 仅能指出损失 而不能给出可能性 根据历史构造的压力情景 未必是未来的最坏情景 基于历史数据构造的压力情景很少考虑到资产组合自身的风险特征 144 二 系统化压力试验 一 基本原理1 系统化压力试验是在一定条件下 对影响资产组合价值P的风险因子r1 r2 rn 采用数学或者统计的方法生成大量的市场情景 然后评估这些情景对资产组合价值变化的影响 从中搜寻资产组合的最坏情景 即导致资产组合价值损失最大的压力情景 145 二 系统化压力试验 一 基本原理 续 2 系统化压力试验与情景分析法的主要区别 前者针对一系列不同的压力情景进行压力试验 因此更加彻底 系统化 前者既考虑了风险因子在历史上的极端变动 又考虑到未来潜在的所有可能压力情景 因而本质上是一种前瞻性的情景分析法 前者考虑了资产组合的风险特征在确定其最坏情景过程中的作用 146 二 系统化压力试验 续 二 搜寻最坏情景的基本思路和步骤1 所谓最坏情景 Worst caseScenarios 是指导致资产组合在未来发生最大损失的市场情景 2 搜寻最坏情景的基本思路 在一些合理性条件下 搜寻资产组合最小价值对应的市场情景 1 合理性条件 在搜寻最坏情景时 不可能保证所有市场情景都会被搜寻 所以必须考虑不同市场情景的合理性 即发生的可能性 合理性条件记为C 147 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 2 满足合理性条件C的所有市场情景的集合 称为允许域 AdmissibilityDomain 记为D 3 系统化搜寻最坏情景就转化为下面的一个最优化问题 r 其中P r1 r2 rn 是资产组合的价值函数 表示允许域D中的一个市场情景 r 指的是该资产组合在给定的合理性条件C下的最坏情景 148 3 系统化压力试验的一般步骤 1 确定合理性条件和允许域 不考虑风险因子之间相关性的情形考虑风险因子之间相关性的情形 2 搜寻最坏情景 因素推动方法网格搜寻方法MonteCarlo法和拟MonteCarlo模拟法 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 149 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 150 合理性条件以及允许域的确定 1 不考虑风险因子之间相关性的情形 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 r1 r2 151 2 考虑风险因子之间相关性的情形 D r r0 r 1 r0 r T k2 其中 为风险因子的变化r r0的协方差矩阵 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 152 5 搜寻最坏情景 1 因素推动方法确定市场因子的最不利变化方向 让各风险因子朝最不利的变化方向移动一个给定的数值 使资产组合的价值减少最多 并据此确定资产组合的最坏情景以及最坏情景下的资产组合价值 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 153 2 网格搜寻方法先把前面得到的 长方体 允许域进一步分割为若干小的长方体 每个小长方体的顶点就对应着一个压力情景 再根据资产组合的价值函数表达式 可计算出上述每个压力情景处的资产组合价值 最后 通过比较不同情景处资产组合价值的大小 可近似得到资产组合的最坏情景 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 154 r0 r1 r2 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 155 MonteCarlo法和拟MonteCarlo方法确定一个从n维单位长方体到n维空间中的长方体允许域的变换T 采用MonteCarlo或者拟MonteCarlo方法生成N个随机向量 可得到N个压力情景T xi 分别计算所对应的资产组合价值 其中那个最小值所对应的压力情景就是近似的最坏情景 二 系统化压力试验 二 搜寻最坏情景的基本思路和步骤 续 156 二 系统化压力试验

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论