集成光学课程第九章.ppt_第1页
集成光学课程第九章.ppt_第2页
集成光学课程第九章.ppt_第3页
集成光学课程第九章.ppt_第4页
集成光学课程第九章.ppt_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntegratedOpticalDetectors Detectorsforuseinintegrated opticapplicationsmusthavehighsensitivity shortresponsetime largequantumefficiencyandlowconsumption Inthischapter anumberofdifferentdetectorstructureshavingtheseperformancecharacteristicsarediscussed 9 1DepletionLayerPhotodiodes9 2SpecializedPhotodiodeStructure9 3TechniquesforModifyingSpectralResponse9 4FactorsLimitingPerformanceofIntegratedDetectors 本章学习各种探测器的工作原理 重点掌握耗尽层光电探测器的工作原理 9 1DepletionLayerPhotodiodes Themostcommontypeofsemiconductoropticaldetector usedinbothintegratedopticanddiscretedeviceapplications isthedepletion layerphotodiode Thedepletion layerphotodiodeisessentiallyareverse biasedsemiconductordiodeinwhichreversecurrentismodulatedbytheelectron holepairsproducedinornearthedepletionlayerbytheabsorptionofphotonslight Thediodeisgenerallyoperatedinthephotodiodemode withrelativelylargebiasvoltage 9 1 1ConventionalDiscretePhotodiode Thesimplesttypeofdepletionlayerphotodiodeisthep njunctiondiode Theenergybanddiagramforsuchadevice withreversebiasvoltageVaappliedisshowninFig 9 1 Thetotalcurrentofthedepletionlayerphotodiodeconsistsoftwocomponents adriftcomponentoriginatingfromcarriersgeneratedinregion b andadiffusioncomponentoriginatinginregions a and c Fig 9 1Energybanddiagramforap njunctiondiodeunderapplicationofareversebiasvoltageVa Holesandelectronsgeneratedinregion b areseparatedbythereversebiasfield withholesbeingsweptintothep region c andelectronsbeingsweptinton region a Holesgeneratedinthen regionorelectronsgeneratedinthep regionhaveacertainprobabilityofdiffusingtotheedgeofthedepletionregion b atwhichpointtheyaresweptacrossbythefield Majoritycarriers electronsin a orholesin c areheldintheirrespectiveregionsbythereversebiasvoltage andarenotsweptacrossthedepletionlayer Inordertominimizeseriesresistanceinapracticalphotodiodewhilestillmaintainingmaximumdepletionwidth usuallyoneregionismuchmoreheavilydopedthantheother Inthatcase thedepletionlayerformsalmostentirelyonthemorelightlydopedsideofthejunction asshowninFig 9 2 Suchadeviceiscalledahigh lowabruptjunction Fig 9 2Energybanddiagramforap n high low junctiondiodeunderapplicationofareversebiasvoltageVa InGaAsanditsternaryalloys electronmobilityisgenerallymuchlargerthanholemobility Thus thep regionisusuallymadethinnerandmuchmoreheavilydopedthanthen region sothatthedevicewillbeformedmostlyinn typematerial andthep regionthenservesessentiallyjustasacontactlayer Foradevicewiththehigh lowjunctiongeometryindicatedinFig 9 2 itcanbeshownthatthetotalcurrentdensityJtotisgivenby 9 1 1 where 0isthetotalphotonfluxinphotons cm2s Wisthewidthofthedepletionlayer qisthemagnitudeoftheelectroniccharge istheopticalinterbandabsorptioncoefficient Lpisthediffusionlengthforholes Dpisthediffusionconstantforholes andpn0istheequilibriumholedensity Thelasttermrepresentsthereverseleakagecurrent ordarkcurrent whichresultsfromthermallygeneratedholesinthen material Thisexplainswhythattermisnotproportionaltothephotonflux 0 Thefirsttermgivesthephotocurrent whichisproportionalto 0 andincludescurrentformboththedriftofcarriersgeneratedwithinthedepletionlayerandthediffusionanddriftofholesgeneratedwithinadiffusionlengthLpofthedepletionlayeredge Thequantumefficiencyofthedetector orthenumberofcarriersgeneratedperincidentphoton isgivenby 9 1 2 whichcanhaveanyvaluefromzerotoone Itshouldbenotedthat 9 1 1 and 9 1 2 arebasedonthetacitassumptionthatscatteringlossandfreecarrierabsorptionarenegligiblesmall Itcanbeseenfrom 9 1 2 that inordertomaximize q itisdesirabletomaketheproducts Wand Lpaslargeaspossible When Wand Lparelargeenoughsothat qisapproximatelyequaltoone thediodecurrentisthenessentiallyproportionalto 0 becausethedarkcurrentisusuallynegligiblysmall Iftheinterbandabsorptioncoefficient istoosmallcomparedtoWandLp manyoftheincidentphotonswillpasscompletelythroughtheactivelayersofthediodeintothesubstrate asshowninFig 9 3 Onlythosephotonsabsorbedwithinthedepletionlayer ofthicknessW havemaximumeffectivenessincarriergeneration PhotonsabsorbedatdepthsuptoadiffusionlengthLpfromthedepletionlayeredgearesomewhateffectiveingeneratingphoto carriers inthatholescandiffuseintothedepletionlayer Fig 9 3Diagramofaconventionalmesa geometryphotodiodewithp ndopingprofileshowingphotonpenetration Photonsthatpenetratetoasdepthgreaterthat W Lp beforebeingabsorbedareessentiallylosttothephoto generationprocessbecausetheyhavesuchalowstatisticalprobabilityofproducingaholethatcanreachthedepletionlayerandbesweptacross Withinthesemiconductor thephotonfluxfallsoffexponentiallywithincreasingdepthxfromthesurface Thusif isnotlargeenough manyphotonswillpenetratetoodeeplybeforebeingabsorbed thusproducingcarriersthat onaverage willrecombinebeforediffusingfarenoughtoreachthedepletionlayer Interbandabsorptionisastrongfunctionofwavelengthinasemiconductor Thus itisimpossibletodesignadiodewithanidealWforallwavelengths Asidefromthereductionofquantumefficiencythatresultsfrompoormatchingof WandLp therearesomeotherlimitationstodepletionlayerphotodiodeperformancethatarealsoimportant SinceWisusuallyrelativelysmall intherangeof0 1to1 0 m junctioncapacitancecanlimithigh frequencyresponsethroughthefamiliarR Ctimeconstant Also thetimerequiredforcarrierstodiffusefromdepthsbetweenWand W Lp canlimitthehighfrequencyresponseofaconventionalphotodiode Thewaveguidedepletionlayerphotodiode whichisdiscussedinthenextsection significantlymitigatesmanyoftheseproblemsoftheconventionalphotodiode 9 1 2WaveguidePhotodiodes Ifthebasicdepletionlayerphotodiodeisincorporatedintoawaveguidestructure asshowninFig 9 4 anumberofimprovementsinperformancearerealized Inthiscase thelightisincidenttransverselyontheactivevolumeofthedetector ratherthanbeingnormaltothejunctionplane Thediodephotocurrentdensityisthengivenby 9 1 3 Fig 9 4Diagramofwaveguidedetector whereListhelengthofthedetectorinthedirectionoflightpropagation SinceWandLaretwoindependentparameters thecarrierconcentrationwithinthedetectorvolumeandthebasisvoltageVacanbechosensothattheLcanbemadeaslongasnecessarytomake L 1 Thus100 quantumefficiencycanbeobtainedforanyvalueof bymerelyadjustingthelengthL Forexample foramaterialwiththerelativelysmallvalueof 30cm 1 alengthofL 3mmwouldgive q 0 99988 Again ithasbeentacitlyassumedin 9 1 3 thatscatteringlossandfree carrierabsorptionarenegligible Becauseawaveguidedetectorcanbeformedinanarrowchannelwaveguide thecapacitancecanbeverysmall evenifLisrelativelylarge Thiscapacitanceisaboutafactoroftenlessthanthatoftypicalconventionalmesaphotodiode Hence thehighfrequencyresponsecanbeexpectedtobecorrespondinglyimproved Becausealloftheincidentphotonsareabsorbeddirectlywithinthedepletionlayerofawaveguidephotodetector notonly qisimproved butalsothetimedelayassociatedwiththediffusionofcarriersiseliminated Thisresultisafurtherimprovementinhighfrequencyresponse Duetothemanyimprovementsinperformanceinherentinthetransversestructureofthewaveguidedetector ascomparedtotheaxialgeometryoftheconventionalmesaphotodiode waveguidedetectorsshouldbeconsideredforuseindiscrete deviceapplicationsaswellasinopticalintegratedcircuits 9 2SpecializedPhotodiodeStructure Therearetwoveryusefulphotodiodestructuresthatcanbefabricatedineitherawaveguidingorconventional nonwaveguidingform ThesearetheSchottky barrierphotodiodeandtheavalanchephotodiode APD 9 2 1Schottky BarrierPhotodiode TheSchottky barrierphotodiodeissimplyadepletionlayerphotodiodeinwhichthep njunctionisreplacedbyametal semiconductorrectifying blocking contact Forexample ifthep typelayersinthedevicesofFig 9 4werereplacedbyametalthatformsarectifyingcontacttothesemiconductor Schottky barrierphotodiodeswouldresult Thephotocurrentwouldstillbegivenby 9 1 1 and 9 1 3 andthedeviceswouldhaveessentiallythesameperformancecharacteristicsastheirp njunctioncounterparts TheenergybanddiagramsforaSchottky barrierdiode underzerobiasandunderreversebias aregiveninFig 9 5 Itcanbeseenthatthedepletionregionextendsintothen typematerialjustasinthecaseofap njunction Thebarrierheight Bdependsontheparticularmetal semiconductorcombinationthatisused Typicalvaluesfor Bareabout1V Fig 9 5a b EnergybanddiagramforaSchottky barrierdiode a zerobias b reversebiasedwithvoltageVa Inconventionalmesadevices athin opticallytransparentSchottky barriercontactisoftenused ratherthanap njunction toenhanceshort wave lengthresponse byeliminatingthestrongabsorptionofthesehigherenergyphotonsthatoccursintheplayer Inawaveguidephotodiode aSchottky barriercontactisnotneededforimprovedshort wavelengthresponsebecausethephotonsentertheactivevolumetransversely However easeoffabricationoftenmakestheSchottky barrierphotodiodethebestchoiceinintegratedapplications Forexample almostanymetal exceptforsilver producesarectifyingSchottky barrierwhenevaporatedontoGaAsatroomtemperature Gold aluminumorplatinumareoftenused Photodiodemaskingisadequatetodefinethelateraldimensionsduringevaporation andnocarefulcontroltimeandtemperatureisrequired asinthecaseofdiffusionofashallowp layer 9 2 2AvalanchePhotodiode Thegainofadepletionlayerphotodiode i e thequantumefficiency ofeitherthep njunctionorSchottky barrier canbeatmostequaltounity undernormalconditionsofreversebias However ifthedeviceisbiasedpreciselyatthepointofavalanchebreakdown carriermultiplicationduetoimpactionizationcanresultinsubstantialgainintermsofincreaseinthecarriertophotonratio Infact avalanchegainsashighas104arenotuncommon Typicalcurrent voltagecharacteristicsforanavalanchephotodiodeareshowninFig 9 6 Fig 9 6Responsecurvesforanavalanchephotodiode Theuppercurveisfordarkenedconditions whiletheloweroneshowstheeffectsofillumination Forrelativelylowreversebiasvoltage thediodeexhibitsasaturateddarkcurrentId0andasaturatedphoto currentIph0 However whenbiasedatthepointofavalanchebreakdown carriermultiplicationresultsinincreaseddarkcurrentId aswellasincreasephoto currentIph Itispossibletodefineaphoto multiplicationfactorMph givenby 9 2 1 andamultiplicationfactorM givenby 9 2 2 whereVbisthebreakdownvoltage andnisanempiricallydeterminedexponentdependingonthewavelengthoflight dopingconcentration and ofcourse thesemiconductormaterialfromwhichthediodeisfabricated Forthecaseoflargephoto currentIph0 Id0themultiplicationfactorisgivenby 9 2 3 whereIisthetotalcurrent givenby 9 2 4 Rbeingtheseriesresistanceofthediode includingspace chargeresistanceifsignificant Thederivationof 9 2 3 assumesthatIR Vb ForthecaseofId0andIdbeingnegligiblysmallcomparedtoIph0andIph itcanbeshownthatthemaximumattainablemultiplicationfactorisgivenby 9 2 5 Avalanchephotodiodesareveryusefuldetectors notonlybecausetheyarecapableofhighgain butalsobecausetheycanbeoperatedatfrequenciesinexcessof10GHz However noteveryp njunctionorSchottky barrierdiodecanbeoperatedintheavalanchemultiplicationmode biasednearavalanchebreakdown Forexample thefieldrequiredtoproduceavalanchebreakdowninGaAsisapproximately4x105V cm Hence foratypicaldepletionwidthof3 m Vbequals120V MostGaAsdiodeswillbreakdownatmuchlowervoltagesduetoothermechanisms suchasedgebreakdownormicroplasmsgenerationatlocalizeddefects thusneverreachingtheavalanchebreakdowncondition Inordertofabricateanavalanchephotodiode extremecaremustbetaken beginningwithadislocation freesubstratewaferofsemiconductormaterial 9 3TechniquesforModifyingSpectralResponse Thefundamentalproblemofwavelengthincompatibility whichwasencounteredpreviouslyinregardtothedesignandfabricationofmonolithiclaser waveguidesstructures isalsoverysignificantwithrespecttowaveguidedetectors Anidealwaveguideshouldhaveminimalabsorptionatthewavelengthbeingused Howeveradetectordependsoninterbandabsorptionforcarriergeneration Hence ifadetectorismonolithicallycoupledtoawaveguide somemeansmustbeprovidedforincreasingtheabsorptionofthephotonstransmittedbythewaveguidewithinthedetectorvolume Anumberofdifferenttechniqueshavebeenproveneffectiveinthisregard 9 3 1HybridStructures Oneofthemostdirectapproachestoobtainingwavelengthcompatibilityistouseahybridstructure inwhichadetectordiode formedinarelativelynarrowbandgapmaterial iscoupledtoawaveguidefabricatedinwiderbandgapmaterial Thetwomaterialsarechosensothatphotonsofthedesiredwavelengtharetransmittedfreelybythewaveguide butarestronglyabsorbedwithinthedetectormaterial Anexampleofthistypeofhybridwaveguide detectoristheglassonsiliconstructure asshowninFig 9 7 Fig 9 7Hybridwaveguidedetectorfeaturingaglasswaveguidecoupledtoasiliconphotodiode Thediodewasformedbyborondiffusiontoadepthofabout1 mintoann type 5cmsiliconsubstrate A1 mthicklayerofthermallygrownSiO2wasusedasadiffusionmask Theglasswaveguidewasthensputter depositedandsilverpaintelectrodeswereaddedasshown Totalguidelosswasmeasuredtobe0 8dB cm 10 forlightof632 8nmwavelength Theefficiencyofcouplingbetweenthewaveguideandthedetectorwas80 However becausethelightentersthediodeinthedirectionnormaltothejunctionplaneratherthanparalleltoit thisparticularwaveguidedetectorgeometrydoesnothavemanyoftheadvantagesdescribedinSect 9 1 2 Nevertheless goodhighfrequencyresponsecanbeexpected Thesediffuseddiodeshadacapacitanceofonly3x10 9F cm2whenbiasedwithVaequalto10V Thusadetectordiodeofapproximately10 mradius usedinconjunctionwitha50 loadresistance wouldhaveanRCtimeconstantofabout15ps implyingthatmodulationoffrequenciesinexcessof10GHzcouldbedetected Whilehybriddetectorsofferthepossibilityofchoosingthewaveguideanddetectormaterialsforoptimumabsorptioncharacteristics bettercouplingefficiencycanbeobtainedwithmonolithicfabricationtechniques Monolithicallyfabricatedwaveguidedetectorsalsohavetheadvantagesthatlightentersthedeviceintheplaneofthejunctionrathernormaltoit 9 3 2HeteroeptaxialGrowth Perhapsthemostpopularmethodofmonolithicallyintegratingawaveguideanddetectoristouseheteroepitaxialgrowthofarelativelynarrowbandgapsemiconductoratthelocationwhereadetectorisdesired AnexampleofthisapproachisgivenbytheInGaAsdetectorthathasbeenintegratedwithaGaAswavelguide asshowninFig 9 8 InInxGa 1 x As thebandgapcanbeadjustedtoproducestrongabsorptionoflightatwavelengthintherangefrom0 9to1 15 mbychangingtheatomicfractionxofindium Fig 9 8MonolithicallyintegratedInGaAsdetectorinaGaAswaveguide ThemonolithicallywaveguidedetectorstructureshowninFig 9 8combinesanepitaxiallygrowncarrier concentration reductiontypewaveguidewithaplatinumSchottkybarrierdetector A600nmthicklayerofpyrolyticallydepositedSiO2wasusedasamasktoetcha125 mdiameterwellintothe5to20 mthickwaveguide andthengrowtheInxGa 1 x Asdetectormaterial Aquantumefficiencyof60 wasmeasuredforthisdetectoratawavelengthof1 06 m forlowbiasvoltages Thelossinthewaveguidewaslessthan1dB cm Atbiasvoltagegreaterthanabout40V avalanchemultiplicationwasobserved withmultiplicationfactorsashighas50 Optimumperformancewasobtainedatawavelengthof1 06 mforanInconcentrationofx 0 2 Thefactthatquantumefficiencyinthisdevicesdidnotapproach100 morecloselywasmostlikelycausedbylessthanoptimumdepletionwidthintheSchottky barrierdiode ThecarrierconcentrationinthewaveguidemustbeverycarefullycontrolledinordertomakeWequaltothewaveguidethickness DefectcentersassociatedwithstressattheGaAs GaInAsinterfacemayhavealsoplayedaroleinreducing q Ingeneral theIII Vcompoundsemiconductorsandtheirassociatedternary andquaternary alloysofferthedevicedesignerawiderangeofbandgaps andcorrespondingabsorptionedgewavelengths Therelationshipsbetweenbandgaps absorptionedgewavelengthsandlatticeconstantsareshowninFig 9 9 Dottedportionsofthecurvescorrespondtorangesofcompositionforwhichthebandgapisindirect Fig 9 9DependenceofabsorptionedgewavelengthandlatticeconstantoncompositionforselectedIII Valloys Directbandgapmaterialsgenerallyhaveinterbandabsorptioncoefficientsgreaterthan104cm 1forwavelengthsshorterthantheabsorptionedge while maybeseveralordersofmagnitudelessinindirectgapmaterials Neverthelesseffectivedetectorscanbemadeinindirectbandgapmaterials especiallywhenthewaveguidedetectorgeometryisused sothatthelengthLcanbeadjustedtocompensateforsmall Themostpopularmaterialforthefabricationofdetectorsinthe1 0to1 6 mwavelengthrangeisGaInAsP 9 3 3ProtonBombardment InChap 4 protonbombardmentwasdescribedasamethodforproducingopticalwaveguidesinasemiconductorbygeneratingcarrier trappingdefectcentersthatresultedinreducedcarrierconcentrationandincreasedindexofrefraction Inthatcase thewaveguideswerealwayssufficientlyannealedafterprotonbombardmenttoremovetheopticalabsorptionassociatedwiththetrappingcenters However oneofthemechanismsresponsibleforthisabsorptionistheexcitationofcarriersoutofthetraps freeingthemtocontributetotheflowofphoton current Thus aphotodiodecanbefabricatedbyformingaSchottky barrierjunctionovertheimplantedregion asshowninFig 9 10 Ashallowp njunctioncouldalsobeused Fig 9 10Diagramofaproton implantedopticaldetector Photon currentflowswhenthejunctionisreversebiased becausecarriersliberatedbyphoton excitationwithinthedepletionlayerofthediodearesweptacrossitbythefield Sinceasubstantialnumberofthetrappingcentershaveenergylevelslyingwithintheforbiddengap theeffectivebandgapofthesemiconductorisdecreased sothatphotonshavingless than bandgapenergycanbeabsorbedandtakepartinthecarriergenerationprocess Thusaproton bombardedphotodiode madeinagivensemiconductor canberespectivetophotonsthatwouldordinarilynotbeabsorbedinthematerial Forexample Stolletal havemadeadetectorinGaAsthatissensitiveto1 15 mwavelengthradiation Theopticalwaveguidestructureconsistedofa3 5 mthickn typeepitaxiallayer S doped n 1016cm 3 grownonadegeneratelydopedn typesubstrate n 1 25x1018cm 3 Priortoprotonimplantationtheopticalattenuationat1 15 mwasmeasuredtobe1 3cm 1 butafterimplantationwithadoseof2x1015cm 2300keVprotonsintheregionwhereadetectorwasdesired increasedtoover300cm 1 Apartialannealingofdamageat500 Cfor30minwasperformedtoreduce to15cm 1inordertoallowsomeopticaltransmissionthroughtheentirelengthoftheimplantedregion Then anAlSchottky barriercontactwasevaporatedontopoftheimplantedregiontocompletethedevice Therelativephoto responseoftheprotonimplanteddetectorasafunctionofwavelengthisshowninFig 9 11 alongwiththecorrespondingcurveforasimilardetectorformedinunimplantedGaAs OnlynegligibleresponseoccursintheunimplantedGaAsatwavelengthslongerthan900nm butasubstantialabsorptiontailisobservedfortheprotonbombardedde

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论