![[高等教育]计量经济学-2一元线性回归分析.ppt_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-3/26/ea54e062-426f-4d36-a069-3b7870a76704/ea54e062-426f-4d36-a069-3b7870a767041.gif)
![[高等教育]计量经济学-2一元线性回归分析.ppt_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-3/26/ea54e062-426f-4d36-a069-3b7870a76704/ea54e062-426f-4d36-a069-3b7870a767042.gif)
![[高等教育]计量经济学-2一元线性回归分析.ppt_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-3/26/ea54e062-426f-4d36-a069-3b7870a76704/ea54e062-426f-4d36-a069-3b7870a767043.gif)
![[高等教育]计量经济学-2一元线性回归分析.ppt_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-3/26/ea54e062-426f-4d36-a069-3b7870a76704/ea54e062-426f-4d36-a069-3b7870a767044.gif)
![[高等教育]计量经济学-2一元线性回归分析.ppt_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-3/26/ea54e062-426f-4d36-a069-3b7870a76704/ea54e062-426f-4d36-a069-3b7870a767045.gif)
免费预览已结束,剩余80页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 第二章一元线性回归模型 2 主要内容 回归分析概述双变量线性回归模型的参数估计双变量线性回归模型的假设检验双变量线性回归模型的预测案例 3 2 1回归分析概述 一 变量间的关系及回归分析的基本概念二 总体回归函数 PRF 三 随机扰动项四 样本回归函数 SRF 4 一 变量间的关系及回归分析的基本概念 1 变量间的关系 1 确定性关系或函数关系 研究的是确定现象非随机变量间的关系 一个 或多个 变量的变化能完全决定另一个变量的变化 利息率一定 存入本金与到期本息 5 存在密切联系但并非完全决定居民收入与消费密切相关 但不能完全决定消费广告费支出与销售额密切相关 但不能完全决定销售额 2 统计依赖或相关关系 非确定性关系 研究的是非确定现象随机变量间的关系 6 回归分析 regressionanalysis 是研究一个变量关于另一个 些 变量的具体依赖关系的计算方法和理论 其用意 在于通过后者的已知或设定值 去估计和 或 预测前者的 总体 均值 这里 前一个变量被称为被解释变量 ExplainedVariable 或因变量 DependentVariable 后一个 些 变量被称为解释变量 ExplanatoryVariable 或自变量 IndependentVariable 2 回归分析的基本概念 7 回归分析构成计量经济学的方法论基础 其主要内容包括 根据样本观察值对经济计量模型参数进行估计 求得回归方程 对回归方程 参数估计值进行检验 利用回归方程进行分析 评价及预测 8 二 总体回归函数 回归分析关心的是根据解释变量的已知或给定值 考察被解释变量的总体均值 即当解释变量取某个确定值时 与之统计相关的被解释变量所有可能出现的对应值的平均值 9 10 在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线 populationregressionline 或更一般地称为总体回归曲线 populationregressioncurve 称为 双变量 总体回归函数 populationregressionfunction PRF 相应的函数 11 含义 回归函数 PRF 说明被解释变量Y的平均状态 总体条件期望 随解释变量X变化的规律 函数形式 可以是线性或非线性的 如 将居民消费支出看成是其可支配收入的线性函数时 为一线性函数 其中 0 1是未知参数 称为回归系数 regressioncoefficients 12 三 随机扰动项 总体回归函数说明在给定的收入水平Xi下 家庭平均的消费支出水平 但对某一个别的家庭 其消费支出可能与该平均水平有偏差 称为观察值围绕它的期望值的离差 deviation 是一个不可观测的随机变量 又称为随机干扰项 stochasticdisturbance 或随机误差项 stochasticerror 13 E Y Xi 称为系统性 systematic 或确定性 deterministic 部分 其他为随机或非确定性 nonsystematic 部分ui 14 称为总体回归函数 PRF 的随机设定形式 表明被解释变量除了受解释变量的系统性影响外 还受其他因素的随机性影响 由于方程中引入了随机项 成为计量经济学模型 因此也称为总体回归模型 15 随机误差项主要包括下列因素 在解释变量中被忽略的因素的影响 变量观测值的观测误差的影响 模型关系的设定误差的影响 其他随机因素的影响 随机干扰项的意义将各种次要变量作了综合处理 保证了分析的可操作性 16 四 样本回归函数 SRF 问题 能从一次抽样中获得总体的近似的信息吗 如果可以 如何从抽样中获得总体的近似信息 例 在总体中有如下一个样本 能否从该样本估计总体回归函数PRF 家庭消费支出与可支配收入的一个随机样本 Y 8 00 1100 1400 1700 2000 2300 2600 2900 3200 3500 X 594 638 1122 1155 1408 1595 1969 2078 2585 2530 该样本的散点图 scatterdiagram 画一条直线以尽好地拟合该散点图 由于样本取自总体 可以该直线近似地代表总体回归线 该直线称为样本回归线 sampleregressionlines 18 记样本回归线的函数形式为 称为样本回归函数 sampleregressionfunction SRF 19 样本回归函数的随机形式 样本回归模型 样本回归函数也有如下的随机形式 由于方程中引入了随机项 成为计量经济模型 因此也称为样本回归模型 sampleregressionmodel 式中 i e 称为 样本 残差 或 剩余 项 residual 代表 了其他影响 的随机因素的集合 可看成是 的估计量 回归分析的主要目的 根据样本回归函数SRF 估计总体回归函数PRF 根据 估计 21 2 2双变量线性回归模型的参数估计 一 参数的普通最小二乘估计 OLS 二 双变量线性回归模型的基本假设三 最小二乘估计量的性质四 参数估计量的概率分布及随机干扰项方差的估计 23 回归分析的主要目的是要通过样本回归函数 模型 SRF尽可能准确地估计总体回归函数 模型 PRF 估计方法有多种 其中最广泛使用的是普通最小二乘法 ordinaryleastsquares OLS 为保证参数估计量具有良好的性质 通常对模型提出若干基本假设 实际这些假设与所采用的估计方法紧密相关 24 一 参数的普通最小二乘估计 OLS 给定一组样本观测值 Xi Yi i 1 2 n 要求样本回归函数尽可能好地拟合这组值 普通最小二乘法 Ordinaryleastsquares OLS 给出的判断标准是 二者之差 残差 的平方和最小 25 最小二乘法的思路 为了精确地描述Y与X之间的关系 必须使用这两个变量的每一对观察值 n组观察值 才不至于以点概面 做到全面 Y与X之间是否是直线关系 用协方差或相关系数判断 若是 可用一条直线描述它们之间的关系 在Y与X的散点图上画出直线的方法很多 找出一条能够最好地描述Y与X 代表所有点 之间的直线 问题是 怎样算 最好 最好指的是找一条直线使得所有这些点到该直线的纵向距离的和 平方和 最小 26 最小二乘法的思路 27 最小二乘法的思路 纵向距离是Y的实际值与拟合值之差 差异大拟合不好 差异小拟合好 所以称为残差 拟合误差或剩余 将所有纵向距离平方后相加 即得误差平方和 最好 直线就是使误差平方和最小的直线 拟合直线在总体上最接近实际观测点 于是可以运用求极值的原理 将求最好拟合直线问题转换为求误差平方和最小的问题 28 数学形式 29 得到的参数估计量可以写成 称为OLS估计量的离差形式 deviationform 由于参数的估计结果是通过最小二乘法得到的 故称为普通最小二乘估计量 ordinaryleastsquaresestimators 其中 例2 在上述家庭可支配收入 消费支出例中 对于所抽出的一组样本数 参数估计的计算可通过下面的表进行 31 因此 由该样本估计的回归方程为 32 模型解释变量和误差项ui的假定条件如下 1 ui是一个随机变量 ui的取值服从概率分布 2 E ui 0 3 ui具有同方差性 D ui E ui E ui 2 E ui 2 2 4 ui为正态分布 根据中心极限定理 以上四个假定条件可作如下表达 ui N 0 二 线性回归模型的基本假设 33 5 ui非自相关 Cov ui uj E ui E ui uj E uj E ui uj 0 i j 6 xi是非随机的 7 ui与xi相互独立 Cov ui xi E ui E ui xi E xi E ui xi E xi E uixi uiE xi E uixi 0 8 对于多元线性回归模型 解释变量之间不能完全相关或高度相关 非多重共线性 在假定 1 2 6 成立条件下有E yi E 0 1xi ui 0 1xi 34 同方差 35 异方差 36 三 最小二乘估计量的性质 当模型参数估计出后 需考虑参数估计值的精度 即是否能代表总体参数的真值 或者说需考察参数估计量的统计性质 一个用于考察总体的估计量 可从如下几个方面考察其优劣性 1 线性 即它是否是另一随机变量的线性函数 37 2 无偏性 无偏性意味着这两个估计量没有高估或低估的系统倾向 即估计量的均值或期望值是否等于总体的真实值 38 3 有效性 即估计量在所有线性无偏估计量中具有最小方差 含义 估计量方差与随机项方差 自变量取值范围 样本量等有关 39 这三个准则也称作估计量的小样本性质 拥有这类性质的估计量称为最佳线性无偏估计量 bestlinerunbiasedestimator BLUE 高斯 马尔可夫定理 Gauss Markovtheorem 在给定经典线性回归的假定下 最小二乘估计量是具有最小方差的线性无偏估计量 40 四 参数估计量的概率分布及随机干扰项方差的估计 41 2 随机误差项u的方差 2的估计 由于随机项ui不可观测 只能从ui的估计 残差ei出发 对总体方差进行估计 2的最小二乘估计量为 它是关于 2的无偏估计量 42 43 2 3双变量线性回归模型的统计检验 一 拟合优度检验二 变量的显著性检验三 参数的置信区间 44 如果Yi i即实际观测值落在样本回归 线 上 则拟合最好 45 对于所有样本点 则需考虑这些点与样本均值离差的平方和 可以证明 即TSS ESS RSS 46 TSS ESS RSS 总体平方和 TotalSumofSquares 回归平方和 ExplainedSumofSquares 残差平方和 ResidualSumofSquares 47 Y的观测值围绕其均值的总离差 totalvariation 可分解为两部分 一部分来自回归线 ESS 另一部分则来自随机势力 RSS 在给定样本中 TSS不变 如果实际观测点离样本回归线越近 则ESS在TSS中占的比重越大 因此拟合优度 回归平方和ESS Y的总离差TSS 48 2 判定系数R2统计量 称R2为 样本 判定系数 可决系数 coefficientofdetermination 判定系数的取值范围 0 1 R2越接近1 说明实际观测点离样本线越近 拟合优度越高 49 拟合优度 或称判定系数 决定系数 判定系数只是说明列入模型的所有解释变量对应变量的联合的影响程度 不说明模型中单个解释变量的影响程度 对时间序列数据 判定系数达到0 9以上是很平常的 但是 对截面数据而言 能够有0 5就不错了 50 判定系数达到多少为宜 没有一个统一的明确界限值 若建模的目的是预测应变量值 一般需考虑有较高的判定系数 若建模的目的是结构分析 就不能只追求高的判定系数 而是要得到总体回归系数的可信任的估计量 判定系数高并不一定每个回归系数都可信任 51 二 变量的显著性检验 回归分析是要判断解释变量X是否是被解释变量Y的一个显著性的影响因素 在双变量线性模型中 就是要判断X是否对Y具有显著的线性影响 这就需要进行变量的显著性检验 变量的显著性检验所应用的方法是数理统计学中的假设检验 计量经济学中 主要是针对变量的参数真值是否为零 来进行显著性检验的 52 1 假设检验 所谓假设检验 就是事先对总体参数或总体分布形式作出一个假设 然后利用样本信息来判断原假设是否合理 即判断样本信息与原假设是否有显著差异 从而决定是否 接受 或否定原假设 53 假设检验采用的逻辑推理方法是反证法先假定原假设正确 然后根据样本信息 观察由此假设而导致的结果是否合理 从而判断是否接受原假设 判断结果合理与否 是基于 小概率事件不易发生 这一原理的 54 2 变量的显著性检验 55 检验步骤 1 对总体参数提出假设H0 1 0 H1 1 0 2 以原假设H0构造t统计量 并由样本计算其值 3 给定显著性水平 查t分布表得临界值t 2 n 2 4 比较 判断若 t t 2 n 2 则拒绝H0 接受H1 若 t t 2 n 2 则拒绝H1 接受H0 56 假设检验可以通过一次抽样的结果检验总体参数可能的假设值的范围 如是否为零 但它并没有指出在一次抽样中样本参数值到底离总体参数的真值有多 近 三 参数的置信区间 要判断样本参数的估计值在多大程度上可以 近似 地替代总体参数的真值 往往需要通过构造一个以样本参数的估计值为中心的 区间 来考察它以多大的可能性 概率 包含着真实的参数值 这种方法就是参数的区间估计 如果存在这样一个区间 称之为置信区间 confidenceinterval 1 称为置信系数 置信度 confidencecoefficient 称为显著性水平 levelofsignificance 置信区间的端点称为置信限 confidencelimit 或临界值 criticalvalues 58 图示如下 59 双变量线性模型中 i i 1 2 的置信区间 在变量的显著性检验中已经知道 意味着 如果给定置信度 1 从分布表中查得自由度为 n 2 的临界值 那么t值处在 t 2 t 2 的概率是 1 表示为 即 60 于是得到 1 的置信度下 i的置信区间是 在上述收入 消费支出例中 如果给定 0 01 查表得 由于 于是 1 0的置信区间分别为 0 6345 0 9195 433 32 226 98 61 由于置信区间一定程度地给出了样本参数估计值与总体参数真值的 接近 程度 因此置信区间越小越好 要缩小置信区间 需要增大样本容量n 因为在同样的置信水平下 n越大 t分布表中的临界值越小 同时 增大样本容量 还可使样本参数估计量的标准差减小 提高模型的拟合优度 因为样本参数估计量的标准差与残差平方和呈正比 模型拟合优度越高 残差平方和应越小 62 2 4双变量线性回归分析的应用 预测问题 一 0是条件均值E Y X X0 或个值Y0的一个无偏估计二 总体条件均值与个值预测值的置信区间 63 对于双变量线性回归模型 给定样本以外的解释变量的观测值X0 可以得到被解释变量的预测值 0 可以此作为其条件均值E Y X X0 或个别值Y0的一个近似估计 严格地说 这只是被解释变量的预测值的估计值 而不是预测值 原因 1 参数估计量不确定 2 随机项的影响 64 二 总体条件均值与个值预测值的置信区间 1 总体均值预测值的置信区间 由于 于是 65 于是 在1 的置信度下 总体均值E Y X0 的置信区间为 其中 66 2 总体个值预测值的预测区间 由Y0 0 1X0 u知 于是 式中 从而在1 的置信度下 Y0的置信区间为 67 总体回归函数的置信带 域 confidenceband 个体的置信带 域 68 对于Y的总体均值E Y X 与个体值的预测区间 置信区间 1 样本容量n越大 预测精度越高 反之预测精度越低 2 样本容量一定时 置信带的宽度当在X均值处最小 X越远离其均值 置信带越宽 预测可信度下降 用回归模型预测木材剩余物 伊春林区位于黑龙江省东北部 有森林面积219万公顷 木材蓄积量为2 3亿m3 森林覆盖率为62 5 是我国主要的木材工业基地之一 1999年伊春
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北水土保持工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西兽医防治员三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏殡葬服务工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西食品检验工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西理疗技术员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西机械热加工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东管道工三级(高级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东兽医防治员三级(高级工)历年参考题库典型考点含答案解析
- 烹饪甜品基础知识培训课件
- 2020-2025年监理工程师之监理概论高分通关题型题库附解析答案
- 合伙开公司必签的五份协议
- Module9 Unit2 Wishing You Happiness Every Day(说课稿)-2023-2024学年外研版(三起)英语六年级下册
- 粤沪版物理九年级上册第十二章第1节《认识内能》同步练习
- 采油工培训教学计划
- 设计概论讲课课件(第三版杨晓琪)
- 小学数学分数四则混合运算200题带答案
- 《血管活性药物静脉输注护理》团体标准解读
- 行政管理内控制度模版(3篇)
- GB/T 3324-2024木家具通用技术条件
- 小学音乐跨学科教学的常见问题与应对策略
- 小红书食用农产品承诺书示例
评论
0/150
提交评论