流体属性与流体静力学.ppt_第1页
流体属性与流体静力学.ppt_第2页
流体属性与流体静力学.ppt_第3页
流体属性与流体静力学.ppt_第4页
流体属性与流体静力学.ppt_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空气动力学基础 第1章流体属性和流体静力学 1 1流体的属性1 2作用在流体微团上的力的分类1 3理想流体内一点处的压强及其各向同性1 4流体静平衡微分方程1 5重力场静止液体中的压强分布规律1 6液体的相对平衡问题1 7标准大气 第1章流体属性和流体静力学 1 1流体的属性 1 1 1连续介质的概念从微观上看 不论液体还是气体 分子之间都存在间隙 例如海平面条件下 空气分子平均自由程为l 10 8mm 空气分子的平均自由程与我们宏观上关心的物体 如飞行器 的任何一个尺寸L相比较都是微乎其微的 1mm3气体含2 6 1016个分子 1mm3液体含3 1021个分子 从微观上看 流体分子的运动具有不均匀性 离散性 随机性 1 1 1连续介质的概念 当受到物体扰动时 流体所表现出的是大量分子运动体现出的宏观特性 如压强 密度等 均匀性 连续性 确定性变化 流体力学和空气动力学所关注的正是流体运动的宏观特征 而不是个别分子的微观特征 流体力学和空气动力学是从宏观上研究流体的运动规律和作用力 流体内部 流体与物体之间 规律的学科 常用 介质 一词表示它所处理的流体 液体和气体 1 1 1连续介质的概念 流体的连续介质假设 流体是由连续无间隙地充满所占据空间的流体质点组成 流体质点 是一个微观上充分大 宏观上充分小的分子团 是宏观上组成流体的最小单元 流体质点所具有的宏观物理量满足一切物理定律 微观上充分大 分子尺度宏观上充分小 物体尺度 在连续介质的前提下 流体介质的密度可以表达为 流体为均值时 流体为非均值时 其中为流体空间的体积 为其中所包含的流体质量 1 1 1连续介质的概念 下图为时平均密度的变化情况 设A点周围密度较A点为大 当微团体积趋于宏观上充分小 微观上充分大的某体积时 密度达到稳定值 但当体积继续缩小达到时 其密度就不可能保持为常数 1 1 1连续介质的概念 1 1 1连续介质的概念 一般用努生数 即分子平均自由程与物体特征尺寸之比来判断流体是否满足连续介质假设 Nu l L 1对于常规尺寸的物体只有到了外层大气中 l L才可能等于甚至大于1 这时气体分子就会像雨点般稀疏的流向物体 此时的空气动力学称为稀薄气动动力学 一旦满足连续介质假设 就可以把流体的一切宏观物理性质如密度 压强 温度及运动速度等表达为空间和时间的连续可微函数 便于用数学分析工具来解决问题 流体与固体在力学特性上最本质的区别在于 二者承受剪应力和产生剪切变形能力上的不同 如图所示 固体能够靠产生一定的剪切角变形量 来抵抗剪切应力 G G是剪切弹性模量 流体与固体的宏观差别 固体 可保持一定体积和形状液体 可保持一定体积不能保持形状气体 既不能保持体积也能不保持形状 1 1 2流体的易流性 对流体 例如甘油 作类似实验将发现 流体的角变形量不仅将与剪切应力 大小有关 而且与剪切应力 的持续时间长短有关 不论所加剪切应力 多么小 只要不等于零 流体都将在剪应力作用下持续不断的产生变形运动 流动 这种特性称为流体的易流性 力学上对流体下的定义是 连续且具有易流性的物质 1 1 2流体的易流性 流体受压时其体积发生改变的性质称为流体的压缩性 而抵抗压缩变形的能力和特性称为弹性 压缩性系数定义为单位压强差所产生的相对体积改变量 体积弹性模量定义为产生单位相对体积改变量所需的压强增高 1 1 3流体的压缩性与弹性 当E较大时 p较小流体不容易被压缩 反之则容易被压缩 液体的E较大 通常可视为不可压缩流体 气体的E通常较小且与热力过程有关 故一般认为气体具有压缩性 对于水 在常温常压下 对于空气 在T 15oC 一个标准大气压下 1 1 3流体的压缩性与弹性 后面讲到高速流动时会证明 即声速的平方等于压强 对密度的变化率 所以气体的弹性决定于它的密度和声速 由于 E还可写为 1 1 3流体的压缩性与弹性 飞行器的飞行速度u和声速a的比值称为马赫数 马赫数的大小可看成是气体相对压缩性的一个指标 当马赫数较小时 空气速度变化引起的压强变化较小 较小的压强变化引起的密度变化可忽略不计 从而低速气体流动有可能被当作不可压缩流动来处理 1 1 3流体的压缩性与弹性 反之当马赫数较大之后 空气速度变化引起的压强变化很大 很大的压强变化引起的密度变化不可忽略 从而气体流动就不能被当作不可压缩流体来处理 而必须考虑流动的压缩性效应 因此 尽管一般我们认为气体是可以压缩的 但在考虑其流动时按照其速度快慢即马赫数大小将其区分为不可压流动和可压缩流动 可以证明 当马赫数小于0 3时 气体流动的压缩性影响可以忽略不计 1 1 3流体的压缩性与弹性 实际流体都有粘性 不过有大有小 空气和水的粘性都不算大 日常生活中人们不会理会它 但观察河流岸边的漂浮物可以看到粘性的存在 下图直匀流流过平板表面的实验表明了粘性的影响 1 1 4流体的粘性 由于粘性影响 均匀气流流至平板后直接贴着板面的一层速度降为零 称为流体与板面间无滑移 任取相邻流层考察可知外层的流体受到内层流体摩擦速度有变慢趋势 反过来内层流体受到外层流体摩擦拖拽其速度有变快趋势 流层间的互相牵扯作用一层层向外传递 离板面一定距离后 牵扯作用逐步消失 速度分布变为均匀 1 1 4流体的粘性 流层间阻碍流体相对错动 变形 趋势的能力称为流体的粘性 相对错动流层间的一对摩擦力即粘性剪切力 以前述流体剪切实验为例 牛顿 1686 发现 流体作用在平板上的摩擦力正比于速度U和平板面积A 反比于高度h 而 是与流体介质属性有关的比例常数 F AU h 1 1 4流体的粘性 设 表示单位面积上的内摩擦力 粘性剪切应力 则 对于一般的粘性剪切层 速度分布不是直线而是前述的曲线 则粘性剪切应力可写为 这就是著名的牛顿粘性应力公式 它表明粘性剪切应力与速度梯度有关 与物性有关 1 1 4流体的粘性 从牛顿粘性公式可以看出 1 流体的剪应力与压强p无关 2 当 0时 无论剪应力多小 只要存在剪应力 流体就会发生变形运动 3 当时 0 即只要流体静止或无变形 就不存在剪应力 流体不存在静摩擦力 因此牛顿粘性应力公式可看成流体易流性的数学表达 1 1 4流体的粘性 速度梯度du dy物理上也表示流体微团的剪切变形速度或角变形率d dt 如图所示 d dy dudtd dt du dy即微团的垂直线单位时间内顺时针转动的角度 1 1 4流体的粘性 流体剪切应力与速度梯度的一般关系为 1 0 du dy binghan流体 泥浆 血浆 牙膏等2 du dy 0 5 伪塑性流体 尼龙 橡胶 油漆等3 du dy 牛顿流体 水 空气 汽油 酒精等4 du dy 2 胀塑性流体 生面团 浓淀粉糊等5 0 0 理想流体 无粘流体 1 1 4流体的粘性 综上所述 流体的剪切变形是指流体质点之间出现相对运动 例如流体层间的相对运动 流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力流体的粘性力是抵抗流体质点之间相对运动 例如流体层间的相对运动 的剪应力或摩擦力在静止状态下流体不能承受剪力 但是在运动状态下 流体可以承受剪力 剪切力大小与流体速度梯度有关 而且与流体种类有关 1 1 4流体的粘性 液体和气体产生粘性的物理原因不同 前者主要来自于液体分子间的内聚力 后者主要来自于气体分子的热运动 因此液体与气体动力粘性系数随温度变化的趋势相反 但动力粘性系数与压强基本无关 液体和气体的动力粘性系数随温度变化的关系可查阅相应表格或近似公式 如气体动力粘性系数的萨特兰公式等 液体 温度升高 变小 反之变大气体 温度升高 变大 反之变小 1 1 4流体的粘性 在许多空气动力学问题里 粘性力和惯性力同时存在 在式子中 和 往往以 的组合形式出现 用符号 表示 1 1 4流体的粘性 1 1 4流体的粘性 空气粘性不大 初步近似研究时可忽略其粘性作用 忽略粘性的流体称为理想流体 按物理意义划分 重力 惯性力 弹性力 摩擦力等 按作用方式划分 表面力和质量力 体积力 彻体力 质量力 外力场作用于流体微团质量中心 大小与微团质量成正比的非接触力 例如重力 惯性力和磁流体具有的电磁力等都属于质量力 也有称为体积力或彻体力 1 2作用在流体微团上力的分类 其中是微团体积 为密度 为作用于微团的质量力 i j k分别是三个坐标方向的单位向量 fx fy fz分别是三个方向的单位质量的质量力分量 例 静止容器 直线匀加速 a 容器和匀角速度 旋转容器中液体的单位质量质量力 由于质量力按质量分布 故一般用单位质量的质量力表示 并且往往写为分量形式 1 2作用在流体微团上力的分类 表面力 相邻流体或物体作用于所研究流体团块外表面 大小与流体团块表面积成正比的接触力 由于按面积分布 故用接触应力表示 并可将其分解为法向应力和切向应力 1 2作用在流体微团上力的分类 法向应力与切向应力即摩擦应力组成接触应力 上述画出的表面力对所指定的流体团块来说则是外力 对整个流体而言是内力 流体内任取一个剖面一般有法向应力和切向应力 但切向应力完全是由粘性产生的 而且流体的粘性力只有在流动时才存在 静止流体是不能承受切向应力的 1 2作用在流体微团上力的分类 在静止流体中 因为不能承受任意剪切应力 无论是理想流体还是粘性流体 其内部任意一点的应力只有内法向应力 在理想 无粘 流体中 不论流体处于静止还是运动状态 因为粘性系数为零 其内部任意一点的应力也只有内法向应力 对于粘性流体 在静止状态下 其内部任意一点的应力只有内法向应力 在运动状态下 其内部任意一点的应力除内法向应力外 还有切向应力 1 2作用在流体微团上力的分类 理想和静止流体中的法向应力称为压强p 其指向沿着表面的内法线方向 压强的量纲是 力 长度 2 单位为 N m2 或 帕 pa 在理想 无粘 流体中 不论流体静止还是运动 尽管一般压强是位置的函数P P x y z 但在同一点处压强不因受压面方位不同而变化 这个结果称为理想流体内压强是各向同性的 注 关于有粘性的运动流体 严格说来压强指的是三个互相垂直方向的法向力的平均值 加负号 1 3理想流体内一点的压强及其各向同性 如讨论P点处压强 在周围取如图微元4面体ABCO 作用在各表面的压强如图所示 理想流体无剪切应力 由于dx dy dz的取法任意 故面ABC的法线方向n方向也是任意的 分别沿x y z三个方向建立力的平衡关系 x方向合外力 质量 加速度 x方向 1 3理想流体内一点的压强及其各向同性 方程左端等于 方程右端等于 三阶小量 0由此可得 因为图中的n方向为任取 故各向同性得证 同理可得 即 1 3理想流体内一点的压强及其各向同性 静止流体内压强是各向同性吗 下面我们研究压强在平衡流体中的分布规律 在平衡流体 静止或相对静止 中取定一笛卡尔坐标系oxyz 坐标轴方位任意 在流体内取定一点P x y z 然后以该点为中心点沿坐标轴三个方向取三个长度dx dy dz 划出一微元六面体作为分析对象 1 4流体静平衡微分方程 假设 六面体体积 dv dxdydz中心点坐标 x y z中心点压强 p p x y z 中心点密度 x y z 中心点处三个方向的单位质量质量力 fx fy fz 微元六面体的表面力可以用中心点处压强的一阶泰勒展开表示 如图为x方向的法向力 其他方向同理可得 由于流体静止故无剪应力 1 4流体静平衡微分方程 x方向的表面力为 x方向的质量力为 流体静止 则x方向的合外力为零 1 4流体静平衡微分方程 两边同除以dv dxdydz并令dv趋于零 可得x方向平衡方程 y z方向同理可得 流体平衡微分方程 表明 当流体平衡时 若压强在某个方向有梯度的话 必然是由于质量力在该方向有分量造成的 1 4流体静平衡微分方程 将上三个式子分别乘以dx dy dz 然后相加起来 得到 此式左端是个全微分 已假设压强是连续可微函数 1 4流体静平衡微分方程 右端括号也是某函数 x y z 的全微分d 称 为质量力的势函数 1 4流体静平衡微分方程 如果沿着任意封闭曲线积分 得到说明单位质量力积分与路径无关 也就是说 单位质量力是有势力 即 这就是平衡的必要条件 即平衡的必要条件是质量力为有势力 换句话说 只有在有势力作用下流体才可能平衡 重力 惯性力和电磁力都为有势力 根据数学分析 上述括号是全微分要求右端的三个质量力分量fx fy fz满足下列关系 1 4流体静平衡微分方程 则平衡微分方程可写为 当质量力有势时 设质量力与势函数的关系为 如果我们知道某一点a的压强值pa和质量力势函数 a的值 则任何其它点的压强和势函数之间的关系便可表出 1 4流体静平衡微分方程 等压面的概念 流场中压强相等的空间点组成的几何曲面或平面 在等压面上满足 上式积分后为一几何曲面或平面 该曲面上满足dp 0 上方程称为等压面微分方程 或 1 4流体静平衡微分方程 等压面方程还可写为 其中 为质量力向量 为等压面上的向径 上式表明 等压面处处与质量力相正交 1 4流体静平衡微分方程 例如 1 在重力场下静止液体等压面必然为水平面 2 在加速上升电梯中的液体除了受到重力之外 还受到向下的惯性力 二者合成的质量力力均为向下 因此等压面也是水平面 1 4流体静平衡微分方程 设封闭容器自由面处压强为p0 如图建立坐标系 考虑距水平轴高度为y处的某单位质量流体 其质量力可表示为 其中g为重力加速度 1 5重力场静止液体中的压强分布规律 积分得 注意重度 g 符号 读作 g me 此式称为平衡基本方程 上式表明 在平衡流体中p 与y之和为常数 显然 静止流体中等压面为水平面y c 代入平衡微分方程得 1 5重力场静止液体中的压强分布规律 的几何意义为 y 代表所研究流体质点在坐标系中所处高度 称为高度水头p 代表所研究流体质点在真空管中上升高度 称为压力水头H 由于方程量纲为高度 该积分常数代表上述二高度之和称为总水头 如下图所示 1 5重力场静止液体中的压强分布规律 对于不同高度上的1 2两点 平衡基本方程可以写为 表明平衡流体中不同高度处 压力水头与高度水头可以互相转换 但总水头保持不变 1 5重力场静止液体中的压强分布规律 的物理意义为 y 代表单位重量流体的重力势能简称势能p 代表单位重量流体的压力势能简称压力能H 代表平衡流体中单位重量流体的总能量 平衡基本方程表明 平衡流体中势能与压力能可以互相转换 但总能量保持不变 1 5重力场静止液体中的压强分布规律 假设自由液面距水平轴距离为H 则自由面与y处流体满足 其中h H y是所论液体距自由面的深度 1 5重力场静止液体中的压强分布规律 式表明 平衡流体中距自由面深h处的压强来自于两部分的贡献 一是上方单位面积上的液重 h 因此压强随距自由面的淹没深度而线性增加二是自由面上的压强贡献p0 而该贡献处处相同与深度无关这一原理的推论就是静压传递的帕斯卡原理 静止液体中某作用面上施加的压强增量将等大的传递到液体联通器中任何地方 即对任意h均有dp dp0 这是千斤顶 水压机和助力器等液压机械的基本原理 1 5重力场静止液体中的压强分布规律 压强的计量 以真空为压强参考值计量的压强称为绝对压强 如上式中的p以大气压pa为参考压强 高出大气压部分的压强称为相对压强pb p pa以大气压pa为参考压强 不足大气压部分的压强称为真空度pv pa p对于同一个压强值p 其相对压强pb与其真空度pv之间的关系为pb pv 当自由面为大气压pa时 距自由面深h处的压强可表为 1 5重力场静止液体中的压强分布规律 湿式大气压力计 例 湿式大气压力表的工作原理 有一种大气压力表是用汞柱的高度来表达大气压的数值的 一根上端封闭的长玻璃管和一个盛汞的底盒 玻管竖立 玻管中有汞与底盒中的汞连通 玻管中汞柱的上端是真空的 1 5重力场静止液体中的压强分布规律 按式 玻管下面与盒中汞面等高的A处 距上表面的深度为h 的压强pA是 而pA和大气压pa相等 即 这样 要计算大气压的值的话 只要把气压表上读下来的汞柱高度米乘以汞的重度就是了 大气压的读数往往只说汞柱高就行了 一个标准气压是760毫米汞柱 1 5重力场静止液体中的压强分布规律 在以匀加速运动或匀角速度转动的相对静平衡流体中 如果将坐标系固连在以匀加速运动或匀角速度转动的容器上 对液体引入惯性力 达朗伯原理 则同样可以利用平衡微分方程求解问题 如图圆筒作匀角速转动 求其中液体的等压面形状和压强分布规律 1 6液体的相对平衡问题 将坐标系固连于转筒 并建如图坐标系 考虑距底壁为z 半径为r处单位质量流体 会受到一个向下的质量力大小为g 此外还受到一个向外的惯性力大小为 2r 在直角坐标系中 三个方向的彻体力可表为 1 6液体的相对平衡问题 求等压面 由等压面方程 可得 积分得 即 为旋转抛物面族 1 6液体的相对平衡问题 特别地 设自由面最低点距坐标原点高H时 可定出自由面对应的常数 r 0时 c z H 故自由面方程为 其中称为超高 即液面高出抛物线顶点的部分 1 6液体的相对平衡问题 求压强分布 将质量力代入平衡微分方程方程可得 积分得 由自由面条件定出积分常数 x y 0 z H时 p pa 定得积分常数c pa gH 代入上述积分结果 得 1 6液体的相对平衡问题 如果令方括号等于则上式可以写为 其中H 即为从自由面向下的淹没深度 上述压强分布表明 在旋转平衡液体中 压强随深度线性增加 随半径呈平方增加 比较A B C三点处的压强 1 6液体的相对平衡问题 此外压强分布还与旋转角速度的平方 2成正比 如旋转角速度很大 这个彻体力可以很大 从而一定半径处的压强会很大 由于随半径不同各处的惯性离心力不同 因此合成的质量力方向随半径而变化 这是旋转平衡液体的等压面成为抛物面形状的原因 旋转液体的特点在工程中也有很重要的应用 例如旋转铸造或离心铸造等 对于铸造薄壁容器 列车车轮等有重要意义 1 6液体的相对平衡问题 如图为旋转液体压强分布演示 1 6液体的相对平衡问题 包围整个地球的空气总称为大气 在大气层内温度 压强 密度 粘性 声速等随高度发生变化 按其变化特征 可将大气分为若干层 1 对流层 从海平面起算的最低一层大气 高度0 11km 在这一层内密度最大 所含空气质量约占整个大气质量的3 4 空气存在上下流动 雷雨和风暴等气象变化均发生在这一层内 温度随高度直线下降 1 7标准大气 2 平流层 高度从11 32km 所含空气质量占整个大气的1 4 大气只有水平方向的运动 没有雷雨等气象变化 从11 20km 温度不变T 216 65K 同温层 从20 32km 温度随高度而上升 3 中间大气层 高度从32 80km 在这一层温度先是随高度上升 在53km处达到282 66K 以后下降 在80km处降低到196 86K 这一层的空气质量约占总质量的1 3000 4 高温层 高度80 400km 温度随高度上升 到400km处达1500 1600K 在150km以上 由于空气过分稀薄 可闻声已经不存在 1 7标准大气 5 外层大气 高度400 1500 1600km 空气分子有机会逸入太空而不与其它分子碰撞 空气质量占总质量的10 11 空气主要成分 N2占78 O2占21 普通飞机主要在对流层和平流层里活动 飞机最大高度39km 探测气球44km 人造卫星100 1000km 大多数陨石消灭在40 60km 1 7标准大气 气象条件逐日都有些变化 更不用说不同的季节了 并且不同地区气象也不相同 无论做飞行器设计 还是做实验研究 都要用到大气的条件 为了便于比较 工程上需要规定一个标准大气 这个标准是按中纬度地区的平均气象条件定出来的 这样做计算时 都依此标准进行计算 做实验时 也都换算成标准条件下的数据 标准大气规定在海平面上 大气温度为15 或T0 288 15K 压强p0 760毫米汞柱 101325牛 米2 密度 0 1 225千克 米3 1 7标准大气 从基准海平面到11km的高空称为对流层 在对流层内大气密度和温度随高度有明显变化 温度随高度增加而下降 高度每增加1km 温度下降6 5K 即 从11km到21km的高空大气温度基本不变 称为同温层 在同温层内温度保持为216 5K 1 7标准大气 因大气密度 是变量且与p T有关 我们可用静平衡微分方程先把压强随高度下降的规律推导出来 高度大于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论