




已阅读5页,还剩110页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章计算机图形处理技术 坐标系与坐标变换图形裁剪技术图形几何变换投影变换 本章要点 3计算机图形处理技术 坐标系分类 3 1坐标系与坐标变换 模型坐标系 造型坐标系MCS ModelingCoordinateSystem 右手坐标系 是用来描述世界坐标系中每个具体物体的形状 当物体的空间位置发生变化时 由造型坐标系定义的物体上的各点的坐标值不变 也称工作坐标系 3 1坐标系与坐标变换 世界坐标系 WC 世界坐标系 也称用户坐标系 是用户用于定义所有物体的统一参考坐标系 它在计算过程中始终保持唯一性 物体从模型坐标下经几何变换到世界坐标系称模型变换 z 用于定义整图或最高层次图形结构 各子图 图元都放在wc的适当位置 世界坐标系与造型坐标系是整体与局部的关系 造型坐标系也称为局部坐标系 世界坐标系也称为整体坐标系 3 1坐标系与坐标变换 观察坐标系 VCS 符合右手定则的直角坐标系 作用 1 用于指定裁剪空间 确定物体要显示输出的部分 2 是通过在观察坐标系中定义观察平面 把三维物体的世界坐标变换为规格化设备坐标 3 1坐标系与坐标变换 设备坐标系 DCS 图形输出设备 如显示器 绘图机 自身都有一个坐标系 称为设备坐标系或物理坐标系 设备坐标系是一个二维平面坐标系 用于在图形设备上定义图形或窗口的位置 它的度量单位是步长 绘图机 或像素 显示器 定义域是整数域且是有界的 3 1坐标系与坐标变换 规格化设备坐标系 NDCS 由于不同的图形设备具有不同的设备坐标系 且不同设备间坐标范围也不尽相同 为了避免由于设备坐标系与设备的相关性影响应用程序的可移植性 引入与设备无关的规格化的设备坐标系 规格化的设备坐标系的取值范围是左下角 0 0 0 0 用户的图形数据经转换成规格化设备坐标系后 使应用程序与图形设备隔离开 增强了应用程序的可移植性 3 1坐标系与坐标变换 坐标变换 3 1坐标系与坐标变换 窗口与视区 1 窗口 Windows 用户坐标系中的一个矩形区域 可以用其左下角点和右上角点坐标来表示 只有在这个区域内的图形才能在设备坐标系下显示输出 其余的将被裁剪掉 窗口可以嵌套 即在第一层窗口中再定义第二层窗口 在第n层窗口中再定义第n 1层窗口 在各种CAD系统中经常用到的框选放大操作就是窗口技术的典型应用 2 视区 Viewport 设备坐标系中的一个矩形区域 在图形设备上用来输出图形的最大区域称之为屏幕域 它是有限的整数域 任何小于或等于屏幕域的区域都可定义为视区 视区由用户在屏幕域中用设备坐标定义 一般也由左下角点和右上角点坐标来表示 同样视区也可以是多层的 而且 在同一屏幕还可以定义多个视区 3 1坐标系与坐标变换 通过变换可以把窗口中的图形和视区中的图形一一对应起来 输出图形 用户坐标系设备坐标系 窗口坐标 视区坐标 输入图形 设备坐标系用户坐标系 视区坐标 窗口坐标 3 1坐标系与坐标变换 3 1坐标系与坐标变换 窗口与视区的变换 3 1坐标系与坐标变换 窗口与视区的变换 3 1坐标系与坐标变换 窗口与视区的变换 3 1坐标系与坐标变换 二维图形的输出过程 三维形体的输出过程 3 1坐标系与坐标变换 注意 1 当视区不变时 窗口尺寸缩小则视区图形尺寸变大 窗口尺寸变大则视区显示尺寸变小 窗口 视区 窗口 3 1坐标系与坐标变换 2 当窗口尺寸不变时 视区的尺寸变化与视区内显示图形的尺寸变化一致 窗口 视区 视区 3 1坐标系与坐标变换 3 如果视区的纵横比与窗口的纵横比不一致时 经变换后的图形在视区中输出时会产生失真现象 因此在定义窗口和视区时 要保证它们的纵横比一致 窗口 视区 视区 3 1坐标系与坐标变换 窗口和视区的关系 窗口定义在用户坐标系中 视区定义在设备坐标系中 窗口能定义一个 数个 嵌套 视区的个数由窗口个数决定 以保证一一对应关系 窗口能进行移动 放大 缩小 旋转等几何变换 视区一般不能进行几何变换 3 1坐标系与坐标变换 结论 当视区大小不变时 窗口缩小或放大时 则显示的图形会相反地放大或缩小 当窗口大小不变时 视区缩小或放大时 则显示的图形会跟随缩小或放大 当窗口与视区大小相同时 则显示的图形大小比例不变 若视区纵横比不等于窗口的纵横比时 则显示的图形会有伸缩变形 3 1坐标系与坐标变换 确定图形中哪些部分落在显示区之内 以便显示落在显示区内的那部分图形 这个选择过程称为裁剪 只有窗口内的物体才能显示出来 因此 窗口之外的物体都是不可见的 可以不参加标准化转换及随后的显示操作 节约处理时间 裁剪 clipping 是裁去窗口之外物体的一种操作 3 2图形的裁剪技术 点与字符的裁剪点的裁剪比较简单 当图形系统的窗口确定之后 设被裁剪的点的坐标为 x y 则只有当该点的坐标满足下式该点才位于窗口之内 并经过窗口 视图变换后送视区中显示 否则该点位于窗口之外而被舍去 3 2图形的裁剪技术 字符的裁剪 根据裁剪精度不同 可分为三种情况 1 字串裁剪用一个限界矩形来包含整个文本字符串 判断该限界矩形是否全部位于裁剪窗口的内部 如果是 则字符串全部保留 如果不是 则字符串全部不可见 这是字符裁剪的最简单方法 裁剪速度最快 但精度最低 3 2图形的裁剪技术 2 字裁剪类似于串裁剪 但限界矩形以单个字符为单位 3 笔划裁剪通过把一个字符看成一系列短笔划的集合 使字符的裁剪归结为对组成这些字符的笔划的裁剪 必须逐条直线的进行 此种方法可以精确地删除字符在窗口外的部分 如实地反映了字符的裁剪结果 优点是裁剪精度最高 缺点是裁剪过程比较复杂 字裁剪 笔划裁剪 3 2图形的裁剪技术 二维直线段裁剪线段与窗口的位置关系有如下几种情况 1 直线段两个端点在窗口内 2 直线段两个端点在窗口外 且与窗口不相交 3 直线段两个端点在窗口外 且与窗口相交 4 直线段一个端点在窗口内 一个端点在窗口外 从图中我们可以看出 不同位置的线段被窗口边界分成一段或几段 但其中只有一段落在窗口内 如何找出落在窗口内线段的起点和终点坐标是关键 常用的算法有矢量裁剪法 编码裁剪法 中点分割法 3 2图形的裁剪技术 编码裁剪法 1 第一位 端点在窗口左边界代码为1 否则为02 第二位 端点在窗口右边界代码为1 否则为03 第三位 端点在窗口下边界代码为1 否则为04 第四位 端点在窗口上边界代码为1 否则为0 定义编码状态表 3 2图形的裁剪技术 1 直线段的两个端点按其所在区域被赋予相应代码 称为端点状态代码 2 测试直线段的端点状态 当两端点状态代码都为零 说明该线段完全位于窗口之内 当两端点的状态代码的位逻辑 与 不为零 说明线段位于窗外同一侧 3 不能通过上述测试的线段 再求它与窗口边界 或边界的延长线 的有效交点 它将线段分割成两个子段 用上述两个条件对这两个子段进行测试 舍弃位于窗外的一段 而对剩余部分再次赋给交点处的端点状态代码 再次测试 再次求交 直至能判断出裁剪剩余部分直线段是否位于窗口内或在窗外 3 2图形的裁剪技术 中点分割法 基本思想 分别寻找直线段两个端点各自对应的最远的可见点 两个可见点之间的连线即为要输出的可见线段 判断直线段是否全部在窗口外 若是则结束 否则 判断点是否可见 若是则即为距点最远的可见点 b线段 返回 否则 将直线段对分 中点为 如果全部在窗口外 d线段 则用代替 否则以代替 e线段 对新的线段从 开始 重复上述过程 直到的长度小于给定的误差 即认为已与窗口的一个边界相交为止 上述过程找到了距点最远的可见点 把两个端点对调 重复上述步骤 即可找到距点最远的可见点 连接两点 即为要输出的可见段 3 2图形的裁剪技术 多边形裁剪 逐边裁剪法 双边裁剪法 分区判断求交法 凸包矩形判别法 边界分割法等 逐边裁剪法原理 先用窗口的一条边界对多边形进行裁剪 保留裁剪后位于该边界窗口内的部分图形 合并外部区域的图形 得到一个或若干个新的封闭图形 当用窗口的第一条边界处理完后 再用第二条边界对新生成的多边形进行裁剪 如此下去 直至窗口的四条边界都裁剪完毕 3 2图形的裁剪技术 逐边裁剪法 1974年由Sutherland和Hodman提出 3 2图形的裁剪技术 图形变换在计算机图形处理中 经常需要对已经生成的图形进行几何变换处理 例如 改变图形的大小 移动图形或根据需要将图形旋转一个角度 输出零件的三视图 显示立体图 或要求一物体绕一轴线作连续的动态转动 使观察者能看到物体的各个侧面 这就要求图形处理软件能够实现旋转 平移 缩放等几何变换 点是构成一个几何形体的最基本的元素 一幅二维图形可以看成是一个点集 因此可以把对图形的几何变换归结为对点的变换 图形的基本构成 顶点坐标 拓扑关系 3 3图形几何变换 图形变换方法一 点的向量表示二维平面中点的表示方法 P x y 三维空间里则用表示 对于一个二维平面的图形或三维空间的立体 可以用一个点的集合 简称点集 来表示 每个点对应一个行向量 则点集为n 2或m 3阶的矩阵 或 3 3图形几何变换 例 已知三角形ABC顶点的坐标分别为 A x1 y1 B x2 y2 C x3 y3 则三角形ABC可以记作矩阵 然后把它以数组的形式存贮在计算机内 3 3图形几何变换 二 变换矩阵由于图形可以用点集表示 因此要对图形进行变换 只要变换点就可以了 对点的变换可以通过相应的矩阵运算来实现 即 旧点 集 变换矩阵新点 集 3 3图形几何变换 设有图形A 经过某种变换后得到的新图形为B 则有 其中 B为变换后图形矩阵 T称为变换矩阵 是用来对原图形施行坐标变换的工具 这里 x y 为变换后点的坐标 x y 为变换前点的坐标 变换矩阵中a b c d的不同取值 可以实现各种不同变换 从而达到对图形进行变换的目的 3 3图形几何变换 二维图形的几何变换一 基本几何变换1 比例变换2 旋转变换3 对称变换4 错切变换5 平移变换二 齐次坐标及齐次变换三 组合变换 3 3图形几何变换 一 基本几何变换1 比例变换比例变换指将原有图形在x y两个方向上进行放大或缩小的变换 通过它可以改变图形的大小和方向 将平面上一点P x y 在x y两个方向上分别进行放大a倍和d倍的比例变换后得到新点P x y P和P 的关系为 写成矩阵的形式为 3 3图形几何变换 其中 T 称为比例变换矩阵 a d分别为沿x y方向上的比例因子 且a d 0 a d的取值不同 变换效果也不同 如下所述 1 如果a d 1 变换为恒等变换 即变换后点的坐标不变 2 如果a d 1 变换为等比例变换 其中 如果a d 1 变换为等比例放大 如果a d 1 变换则为等比例缩小 如图 a b 所示 3 如果a d 变换后的图形会产生畸变 如图 c 所示 3 3图形几何变换 a a d 1 b a d 1 c ad 3 3图形几何变换 例 a 2 d 1时 假设变换前A 1 1 B 2 1 C 1 2 那么 变换后为A 2 1 B 4 1 C 2 2 ABC与 A B C 不相似 3 3图形几何变换 2 旋转变换旋转变换一般指图形绕坐标原点旋转一个角度 规定为 绕原点逆时针方向旋转为正 顺时针方向为负 经过旋转变化后不改变图形自身的大小 形状等 只改变图形的方向 连续的旋转变换相当于将其旋转角度叠加之后的旋转变换 将平面上一点P x y 绕坐标原点逆时针旋转角 变换后得到新点P x1 y1 P和P 的关系为 3 3图形几何变换 其中 为绕坐标原点旋转的变换矩阵 3 3图形几何变换 对字母T进行旋转变换 旋转60 3 3图形几何变换 3 对称变换对称变换又称为反射变换或镜像变换 1 关于坐标原点的对称变换将平面上一点P x y 进行关于原点的对称变换后得到新点P x y P和P 的关系如图 a 应为 x x y y 写成矩阵形式为 其中 为关于原点的对称变换矩阵 3 3图形几何变换 2 关于x轴的对称变换将平面上一点P x y 进行关于x轴的对称变换后得到新点P x y P和P 的关系如图 b 应为 x x y y 写成矩阵形式为 其中 为关于x轴的对称变换矩阵 3 3图形几何变换 3 关于y轴的对称变换将平面上一点P x y 进行关于y轴的对称变换后得到新点P x y P和P 的关系如图 c 应为 x x y y 写成矩阵形式为 其中 为变换矩阵 3 3图形几何变换 4 关于y x的对称变换将平面上一点P x y 进行关于直线y x的对称变换后得到新点P x y P和P 的关系如图 d 应为 x y y x 写成矩阵形式为 其中 为变换矩阵 3 3图形几何变换 5 关于y x的对称变换将平面上一点P x y 进行关于直线y x的对称变换后得到新点P x y P和P 的关系如图 e 应为 x y y x 写成矩阵形式为 其中 为变换矩阵 3 3图形几何变换 4 错切变换错切变换是使图形沿错切方向的坐标发生变化 而另一方向的坐标值不变 从而达到使原图形发生特定变化的目的 错切变换分沿x轴和沿y轴错切两种形式 1 沿x轴方向的错切将平面上一点P x y 进行沿x轴方向的错切变换后得到新点P x y 变换过程如图 a 所示 从图中可以看出 沿x轴方向错切变化后 y坐标不变 x将产生一个增量 x cy 而且c当取正值时 沿x轴的正方向进行错切 反之c取负值 P和P 的关系为 x x cy y y 写成矩阵形式为 3 3图形几何变换 其中 为变换矩阵 a 沿x轴方向的错切 b 沿y轴方向的错切 3 3图形几何变换 2 沿y轴方向的错切将平面上一点P x y 进行沿y轴方向的错切变换后得到新点P x y 变换过程如图 b 所示 从图中可以看出 沿y轴方向错切变化后 x坐标不变 y将产生一个增量 y bx 而且当b取正值时 沿y轴的正方向进行错切 反之b取负值 P和P 的关系为 x x y bx y 写成矩阵形式为 其中 为变换矩阵 3 3图形几何变换 5 平移变换 这里 x y是平移量 应为常数 但是应用上述变换矩阵对点进行变换 而这里的cy bx均非常量 因此用原来的2 2的变换矩阵是无法实现平移变换 上述四种变换都可以通过变换矩阵来实现 但是 若实现平移变换 变换前后的坐标必须满足下面的关系 3 3图形几何变换 将变换矩阵增加一行一列 实施对点进行平移变换 3 3图形几何变换 例 已知三角形顶点坐标为A 0 0 B 20 0 C 0 20 平移参数分别为l 20 m 10 试对此三角形进行平移变换 解 因为平移变换矩阵为所以变换后点的坐标为 3 3图形几何变换 二 齐次坐标 在平移变换中 我们将 xy 扩充为 xy1 实际上是由二维向量变为三维向量 这种用三维向量表示二维向量的方法叫做齐次坐标法 进一步推广 用n 1维向量表示n维向量的方法称之为齐次坐标法 所谓齐次坐标就是用n 1维向量表示n维向量得到的坐标 对齐次坐标进行坐标变换称为齐次变换 相应的变换矩阵称为齐次变换矩阵 设三维空间点P的坐标为 x y z 它是唯一的 若用齐次坐标表示时 则为 hx hy hz h 且不唯一 3 3图形几何变换 齐次坐标的几何意义 将Oxy坐标系增加一与x轴和y轴正交的w轴 在w 1的平面上有点P1 x y 1 则当w由0变化到无穷时 齐次坐标Pw xw yw w 将处在由OP1定义的射线OQ上 二维坐标则是该射线在w 1平面上的交点 有 二维齐次变换表示了在w 1平面上点的坐标变换 即P1到P1 的坐标变换 3 3图形几何变换 齐次坐标的特点 当w 0时 齐次坐标可用来表示无穷远的点将图形处理中的各种变换用统一的方式来处理如二维图形变换矩阵的一般表达式 3 3图形几何变换 二维齐次变换矩阵 其中2 2阶矩阵可以实现图形的比例 对称 错切 旋转等基本变换 1 2阶矩阵可以实现图形的平移变换 2 1阶矩阵可以实现图形的透视变换 而 s 可以实现图形的全比例变换 3 3图形几何变换 小结 3 3图形几何变换 3 3图形几何变换 3 3图形几何变换 二 组合变换在图形的几何变换中 图形的实际变换往往不是单独采用前述的各种基本变换就可以完成 通常需要将各种基本变换组合使用 以完成最终的图形变换 这种由多种基本变换组合而成的变换称为组合变换 相应的变换矩阵叫做组合变换矩阵 假设已知点P依次经过T1 T2和T3三个几何变换 得到的结果为 P PT1 T2 T3运用矩阵乘法的结合律 上式可化为 P P T1T2T3 于是得到组合变换的变换矩阵为 T T1T2T3 由于矩阵不存在交换律 因此矩阵相乘的顺序是不能随意互换的 3 3图形几何变换 组合变换顺序对图形的影响 复杂变换是通过基本变换的组合而成的 由于矩阵的乘法不适用于交换律 即 A B B A 因此 组合的顺序一般是不能颠倒的 顺序不同 则变换的结果亦不同 如图所示 3 3图形几何变换 实例 绕任意点的旋转变换平面图形绕任意点P xp yp 逆时针旋转角 需要通过如下几个步骤来实现 1 将旋转中心平移到坐标原点 变换矩阵为 2 将图形绕坐标原点逆时针旋转角 变换矩阵为 3 3图形几何变换 3 将旋转中心平移回到原来位置 变换矩阵为 4 最后得出绕任意点P的旋转矩阵为 即 当xp 0 yp 0时 即为对原点的旋转变换矩阵 3 3图形几何变换 例 将下图所示图形绕自身对称轴上的一点P 15 12 逆时针旋转90度 放大2倍 x y方向的放大倍数相同 1 试写出各变换的变换矩阵 2 求出复合变换矩阵 3 求出各点变换后的坐标 3 3图形几何变换 解 1 各变换矩阵为 先将P点平移至原点的矩阵 绕原点逆时针旋转 3 3图形几何变换 沿x y轴放大2倍 平移回原位置 3 3图形几何变换 2 组合变换矩阵 3 变换后的坐标为 3 3图形几何变换 作业 1 将下图所示图形绕自身中心点P 20 20 先缩小1 2 x y方向的缩小倍数相同 再顺时针旋转270度 1 试写出各变换的变换矩阵 2 求出组合变换矩阵 3 求出各点变换后的坐标 3 3图形几何变换 2 如图所示平行四边形ABCD 已知图上一点G 10 6 该平行四边形先绕G点逆时针转90度 最后沿Y方向正向移动3个单位距离 1 试写出各变换的变换矩阵 2 求出组合变换矩阵 3 求出A B C D各点变换后的坐标 3 3图形几何变换 1 解 1 各变换矩阵为 先将P点平移至原点的矩阵 沿x y轴缩小1 2倍 绕原点顺时针旋转 3 3图形几何变换 平移回原位置 2 复合变换矩阵 3 变换后的坐标为 3 3图形几何变换 2 解 1 1 先将G点平移到坐标原点 变换矩阵为 2 绕原点顺时针旋转90度的变换距阵为 3 沿Y正向平移3个单位的变换矩阵为 3 3图形几何变换 4 将G点移回原处的变换矩阵为 2 组合变换矩阵为 3 A 13 4 B 13 15 C 6 14 D 6 4 3 3图形几何变换 三维图形变换 三维图形的变换是二维图形变换的简单扩展 变换的原理还是把齐次坐标点 x y z 1 通过变换矩阵变换成新的齐次坐标点 x y z 1 即 其中T为三维基本 齐次 变换矩阵 T 3 3图形几何变换 齐次变换矩阵 平移 缩放旋转错切 透视变换 整体缩放 3 3图形几何变换 比例和对称变换 一般情况 sx sy sz 0 图形沿三个坐标轴方向作放缩变换 当sx 1 sy sz 1时 图形相对于x轴中心对称 其余类推 当sx 1 sy sz 1时 图形相对于yOz平面对称 其余类推 当sx sy sz 1时 图形相对于原点中心对称 3 3图形几何变换 整体缩放 得到 左边同乘s 3 3图形几何变换 3 3图形几何变换 3 3图形几何变换 关于xoy平面 3 3图形几何变换 关于xoz平面 3 3图形几何变换 关于yoz平面 平移变换 3 3图形几何变换 旋转变换 3 3图形几何变换 3 3图形几何变换 3 3图形几何变换 3 3图形几何变换 错切变换 3 3图形几何变换 错切变换 3 3图形几何变换 错切变换 3 3图形几何变换 错切变换 3 3图形几何变换 错切变换 若d h不为零 则沿着x轴方向有错切若b i不为零 则沿着y轴方向有错切若c f不为零 则沿着z轴方向有错切 b c是关于变量x的错切d f是关于变量y的错切h i是关于变量z的错切 3 3图形几何变换 三维组合变换 3 3图形几何变换 3 3图形几何变换 3 3图形几何变换 3 3图形几何变换 例 简单几何体的图形变换 式中 T为所要进行的图形变换矩阵 假定一六面体ABCDEFGH各点的坐标分别为 x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年音频切换台项目资金筹措计划书代可行性研究报告
- 革命文化资源融入初中历史教学探究-以百色市M中学为例
- 汽车传感器与检测技术电子教案:液位传感器
- Brand KPIs for neobanking Freetrade in the United Kingdom-英文培训课件2025.4
- 汽车传感器与检测技术电子教案:检测的作用与意义
- 几种类型小鼠缺氧实验报告范本
- 关+于儒学的现代转化问题-评现代新儒家的儒学转化观
- 介绍学院特色活动方案
- 物理中考一轮复习教案 十五讲 摩擦力 二力平衡
- 从江工会相亲活动方案
- 智慧矿山无人机自动巡检解决方案
- 4.1.1喀斯特地貌课件高中地理人教版(2019)必修一
- 放疗治疗技术管理制度
- 新产品开发周期与研发进度规划计划
- 宁波华润兴光燃气有限公司招聘笔试冲刺题2025
- 2025年济南铁路局招聘笔试参考题库含答案解析
- 《资本论解读》课件
- 《上一堂朴素的语文课》读书交流
- 《生产公司岗位职责》课件
- 部编版语文小升初复习之拼音百题训练(一)
- 加油站安全事故隐患排查治理制度
评论
0/150
提交评论