课题学习《镶嵌》_第1页
课题学习《镶嵌》_第2页
课题学习《镶嵌》_第3页
课题学习《镶嵌》_第4页
课题学习《镶嵌》_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 8课题学习镶嵌莲山课件m 课题学习镶嵌一、教材分析1教材地位和作用第七章三角形首先介绍了三角形的有关概念和性质,接着介绍了多边形的有关概念及其内角和、外角和公式.镶嵌作为课题学习的内容,安排在本章的最后,体现了多边形内角和公式在实际生活中的应用.通过课题的学习,学生可以经历从实际问题抽象出数学问题,建立数学模型,到综合运用已有的知识解决问题的全过程,从而加深对相关知识的理解,提高思维能力.2重难点分析教材由铺地板砖铺地引入镶嵌问题后提问:为什么这样的地砖可以进行平面镶嵌?引发学生的思索,接着又提出:哪几种多边形可以平面镶嵌?为了深化课题研究,教材进一步提出:哪两种正多边形可以平面镶嵌?设问层层递进,不断引发学生的认知冲突,从而引领学生完成课题学习.因此,本节的重点是经历平面镶嵌条件的探究过程,难点是用两种正多边形进行的平面镶嵌.为了突出重点,突破难点,本课题的教学坚持“教与学、2 / 8知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,关注学生的实践与操作,让学生自己准备正多边形,自己拼图,自主发现数学问题,进而解决问题,教师要适时启发学生把平面镶嵌的条件与内角和公式联系起来,进而建立解题模型.二、教学目标分析课题的学习,要求学生先实验得出结论,再把结论运用于实验,是对已学知识的复习、巩固和应用的过程,也是培养学生多种能力的过程,所以确定如下教学目标:1知识技能目标:了解平面镶嵌的条件,会用一个三角形、四边形、正六边形平面镶嵌,形成美丽的图案,积累一定的审美体验.经历探索多边形平面镶嵌的条件过程,并能运用几种图形进行简单的镶嵌设计.2数学思考目标:由多边形的内角和公式说明注意三角形、四边形或正六边形可以镶嵌平面.3解决问题目标:观察常见的地板砖密铺,综合运用所学的知识技能解决平面镶嵌的条件.4情感态度目标:平面镶嵌是体现多边形在现实生活中应用价值的一个方面,通过探索多边形平面图形的镶嵌并且欣赏美丽图案,从而感受数学与现实生活的密切联系,体会数学活动充满了探索性与创造性,培养学生学习数学3 / 8的兴趣,促进创新意识、审美意识的发展.三、教学流程安排活动流程图活动内容和目的活动 1引入背景活动 2实验探究活动 3结果分析活动 4知识运用创设情境,导入新课,了解多边形平面覆盖来自生活实际发现有的多边形能够覆盖平面,有的则不能讨论多边形能覆盖平面的基本条件,运用多边形内角和公式对实验结果进行分析.进行简单的镶嵌设计,把所学知识运用到实践中.四、教学过程设计问题与情景师生行为设计意图活动 11引入背景学生欣赏美丽的校园一角,教师指出:用地砖铺地,4 / 8用瓷砖贴墙,都要求砖与砖严丝合缝,不留空隙,把地面或墙面全部覆盖.从数学角度去分析,这些工作就是用一些不重叠摆放的多边形把平面一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)的问题.从观察生活现象入手,抽象出数学问题平面镶嵌的问题,激发学习兴趣.活动 2实验探究实验 1 尝试用手中的正三角形、正四边形、正五边形、正六边形进行平面镶嵌学生动手操作,记录结果.教师巡回指导,并展示镶嵌效果图案.通过实验,让学生发现正三角形、正四边形、正六边形可以镶嵌成一个平面图案,而正五边形则不能.实验 2 用正三角形与正四形镶嵌成一个平面图案,用正三交形与正六边形镶嵌成一个平面图案学生在拼图的过程中,教师巡回指导.教师对出现的不同的拼图方法予以肯定.学生完成实验后,出示镶嵌效果图案.学生通过实验知道两种正多边形也可以进行平面镶嵌.实验 3 用任意三角形或任意四边形镶嵌成一个平面图案5 / 8学生拼图,教师重点关注学生能否把不相等的角拼接在一个顶点处,能否把相等的边拼在一起.教师出示镶嵌效果图.培养学生的操作能力,了解一般的三角形或四边形可以进行平面镶嵌.问题与情景师生行为设计意图活动 3问题 1分析实验结果问题 2解释实验结果学生观察上述的实验结果,分组讨论平面镶嵌的条件,发现问题与多边形的内角大小有密切关系,教师出示图例,引导学生发现拼接在同一点的各个角的和恰好等于 360.师生归纳得出多边形平面镶嵌的条件:拼接在同一点的各个角的和恰好等于 360;6 / 8相邻的多边形有公共边.例如下图中的点 o 处1+2+3+4=360,oA 两侧的多边形有公共边 oA.图学生解释任意三角形能够进行平面镶嵌的理由:图中1+2+3=180,把 6 个全等的三角形适当地拼接在同一个点,一定能使这点为顶点的 6 个角的和恰好等 360,并且使边长相等的两边贴在一起.于是,用三角形能镶嵌成一个平面图案.学生说明正五边形不能镶嵌成一个平面图案的原因:由多边形内角和公司,可以得到五边形内角和等于(5-2)180=540,因此,正五边形的每个内角等于 5405=108.360不是 108的整数倍,也就是用一些 108的角不能拼出 360的角.学生运用已有的知识对实验结果进行推理分析,把感性认7 / 8识上升到理性认识的高度,说明了理论来源于实践.验证平面镶嵌的条件,说明理论来源于实践又运用于实践.问题与情景师生行为设计意图活动 4问题 1小结反思问题 2自由设计学生自由谈本节课的收获.教师注意纠正学生的错误与不足,对学生的进步予以表扬.教师先展示几组其它平面镶嵌的图形,扩展学生视野,然后要求学生独立设计一份平面镶嵌的图案,教师先个别辅导,再集中欣赏学生的作品.复习巩固已学知识,学生学会小结反思.8 / 8将已学的知识用于实际.培养学生的创造能力,发展学生的审美意识.五、回顾与小结本课题的教学采取实验操作、观察发现、启发引导、探索交流等多种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论