已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计(论文)任务书专业 机械设计制造及其自动化 班级 机械 051 姓名 下发日期 题目专题主要内容及要求主要技术参数进度及完成日期教学院长签字 日 期 教研室主任签字 日 期 指导教师签字 日 期指 导 教 师 评 语指导教师: 年 月 日指 定 论 文 评 阅 人 评 语评阅人: 年 月 日答 辩 委 员 会 评 语指导教师给定成绩(30%)评阅人给定成绩(30%)答辩成绩(40%) 总 评答辩委员会主席签字评定成绩青岛理工大学本科毕业设计(论文)说明书I摘要焊接作为一种工艺手段,已经成为很重要的热处理加工技术。焊接技术是随着金属的应用出现的,金属焊接的方法有很多种,各 种 压 焊 方 法 的 共 同 特 点 是 在 焊 接 过 程中 施 加 压 力 而 不 加 填 充 材 料 。 焊接产品质量的好坏不仅取决于焊接工艺质量,与备料、装配等工序也有密切联系。因此,在整个焊接生产过程中,不论产品的质量要求和批量的大小,均应考虑采用生产工艺装备。焊 接 质 量 与 生 产 装 备 工 业 密 不 可 分 , 其中 装 载 工 件 的 工 作 台 是 在 焊 接 过 程 中 利 用 自 身 的 各 部 分 完 成 焊 接 变 位 的 机 械 。 本 次设 计 的 主 要 内 容 是 :已知工作台的装载能力,焊接时要求的工作台的变位各种参数,设计出利用液压系统传动的 0.5t 液压焊接变位机械,其中包括液压系统的设计,对液压元件的选用,和工作台中回转机构的计算设计。再根据总体上对轴、轴承、联轴器等的刚度、寿命要求、综合位移要求等等,确定其余零部件。关键词:液压;变位;焊接;传动青岛理工大学本科毕业设计(论文)说明书IIAbstractWith the high level of modern industrial development and the continuous advancement of welding technology, welding metal as a way to connect the technology in the production of metal structures has basically replaced the rivets connecting process. The quality of welding quality depends not only on the quality of welding technology, but also on the preparation and assembly processes are closely linked. Hence, throughout the welding process, regardless of the quality of the product requirements and batch size,we should consider the use of production technology and equipment. Among them, the wheel frame is welding driving wheel with the workpiece by means of friction between the cylindrical workpiece driven welding positioner rotating machinery, mainly used in the cylindrical workpiece and welding assembly. This paper studys the following: Cylindrical workpiece in a known weight and rotation speed under the premise of the process of taking into account the transmission efficiency of the existence of friction and, ultimately, the output power to determine the motor type. Then selected based on speed, calculated the transmission gear ratio, so as to further determine the selection of the drive reducer form, quantity, and so on. The quality of welding quality depends not only on the quality of welding technology, but also on the preparation and assembly processes are closely linked. On the basis of the whole shaft, bearings, couplings, such as stiffness, longevity requirements,integrated displacement requirements. we could determine the remaining components.Key words: hydradulic ; pressure,; jointing,; changing ,; drive 青岛理工大学本科毕业设计(论文)说明书III目录摘要 .IAbstract .II目录 .IV第 1 章 绪论 .11.1 液压传动系统的发展概况 .11.2 焊接结构生产现状及发展方向 .1第 2 章 液压系统的设计计算 .22.1 液压缸负载分析22.2 初选系统工作压力62.3 计算液压缸的主要结构尺寸和液压马达排量72.4 计算液压元件实际工作压力102.5 计算液压元件实际所需流量102.6 制定系统方案和拟订液压系统图图112.7 液压元件的选择.16.第 3 章 传动部分设计计算 .183.1 齿轮的设计计算 .183.2 轴的设计计算 .21结论 .26参考文献 .27后记 .28青岛理工大学本科毕业设计(论文)说明书IV附件 1 .29附件 2 .青岛理工大学本科毕业设计(论文)说明书1第 1 章 绪论1.1 液压传动系统的发展概况液压传动相对机械传动来说,是一门新的传动技术。如果从世界上第一台水压机问世算起,至今已有 200 余年的历史。然而,直到 20 世纪 30 年代液压传动才真正得到推广应用。在第二次世界大战期间,由于军事工业需要反应快、精度高、功率大的液压传动装置而推动了液压技术的发展。战后,液压技术迅速转向民用,在机床、工程机械、农业机械、汽车等行业中逐步得到推广。20 世纪 60 年代后,随着原子能、空间技术、计算机技术的发展,液压技术也得到了很大发展,并渗透到各个工业领域。当前液压技术正向着高压、液压传动高速、大功率、高效率、低噪声、长寿命、高度集成化、复合化、小型化以及轻量化等方向发展。同时,新型液压元件和液压系统的计算机辅助测试(CAT) 、计算机直接控制(CDC)、机电一体化技术、计算机仿真和优化设计技术、可靠性技术以及污染控制方面,这也是当前液压技术发展和研究的方向。1.2 焊接结构生产现状及发展方向随着现代工业的高速发展和焊接技术的不断进步,焊接作为一种金属连接的工艺方法,在金属结构生产中已基本取代了铆接连接工艺。焊接与锻造,锻压,切削加工,热处理等金属加工工艺方法的组合,成为机械制造业的主要加工工艺方法。由于焊接焊接结构的多样化及生产过程的复杂性,目前焊接生产过程的机械化,自动化的程度还是比较低,手工操作在某些产品,甚至某些行业中仍占有相当的比例。焊接结构生产地整个过程同其他任何一种生产过程一样,除了基本的生产工序外,还包括大量的辅助工序,其主要是焊接零件的制备,装配,工序间的传送和制品的变位与清理等。另外,制品工序间的检验和成品的检验也占有相当大的工作量。因此,要提高焊接结构的生产率和产品质量,应考虑整个焊接结构生产过程的机械化和自动化,焊接工件的工作台的适时变位是这次课题研究的主要内容。青岛理工大学本科毕业设计(论文)说明书2第 2 章 液压系统的设计计算2.1 负载分析2.1.1 技术要求工件的质量定为 500kg, 工作台最大回转力矩 100N.M, 工作台回转速度 01r/min, 工作台倾斜速度 0.7r/min工作台回转角度 360工作台倾斜角度 1302.1.2 液压缸负载分析受力示意图(如下)取工作台和工件总重 G=1300kg,L=24001.主臂液压缸载荷分析,当主臂水平时受载荷最大G L=285 F1Fy=127.7 (KN)Fx=12.77 (KN)F=128.3(KN)所以液压系统主缸的外载荷 F =64.2(KN)1惯性载荷 F =atgVG式中 g-重力加速度;g=9.8M/ S 2-速度变化量 M/SV-起动或制动时间。行走机械一般取 =0.51.5m/st tv2在此取 =1 m/stv2F = = =1300(N)1atgVG18.930青岛理工大学本科毕业设计(论文)说明书3在当工作台静止时液压缸受载荷 F =64.2(KN)1当工作台和主臂向上抬时,液压缸此时受载荷F =F+ F =65.5(KN)11a图 21 受力示意图2.副臂液压缸载荷分析受力示意图(如下)因为除去主臂的重量所以副臂,工作台和工件重量估算为1t,除去主臂的长度,估算液压缸到工件的重心距离为 2100mm副臂液压缸的动作要使的副臂与工作台能倾斜一定角度,因此F =10201)(5.4KNF = = =1000(N)2atgVG18.9在当工作台静止时液压缸受载荷 F =114.5(KN)2当工作台和副臂向上抬时,液压缸此时受载荷F =F+ F =115.5(KN)22a青岛理工大学本科毕业设计(论文)说明书4图 22 受力示意图3.倾斜液压缸的载荷分析受力分析示意图(如下)除去主臂和副臂的一段距离则估算液压缸到工件重心的距离为 1000 mm,工件的重量估算为 800kg2F =0.8150F=33.3(KN)F = =0.8(KN)3atgVG图 23 受力示意图在当工作台静止时液压缸受载荷 F =33.3 (KN)当工作台发生倾斜时,液压缸此时受载荷青岛理工大学本科毕业设计(论文)说明书5F =F+F =34.1(KN)33a估算液压缸机械效率为 =90 ,液压缸的实际载荷为W%F= W主臂液压缸实际载荷 1在当工作台静止时液压缸受载荷 F = =1W)( KN3.719.0264当工作台和主臂向上抬时,液压缸此时受载荷F = = =72.8(KN)1W9.056副臂液压缸实际载荷 2在当工作台静止时液压缸受载荷 F = =2W)(2.179.054KN当工作台和副臂向上抬时,液压缸此时受载荷F = = ( KN)1W3.1289.05倾斜液压缸实际载荷分析 3在当工作台静止时液压缸受载荷 F = = (KN)3W379.0当工作台发生倾斜时,液压缸此时受载荷F = = (KN)3W8.379.0143,液压马达载荷力矩的计算工作台的回转功率 P cP =T 2 =100 =65.73 WcN6014.32.液压马达的载荷力矩 TT = = 0.25 N.mwnc287.41.365青岛理工大学本科毕业设计(论文)说明书6取齿轮传动效率为 0.95,涡轮蜗杆减速器效率为 0.4,液压马达的机械效率为 0.9T= wT= =0.73 N.m9.045.22.2 初选系统工作压力压力的选择要根据载荷大小和设备类型而定。还要考虑执行元件的装配空间,经济条件及元件供应情况等限制。在载荷一定得情况下,工作压力低,势必要加大执行元件的结构尺寸,对某些设备来说,尺寸要受到限制,从材料消耗角度看也不经济;反之,压力选的太高,对泵,缸,阀等元件的材质,密封,制造精度也要求较高,必然要提高设备的成本。一般来说,对于固定的尺寸不太受限的设备,压力选的低一些,行走机械重载设备压力选的高一些。表 21 各种机械常用的系统工作压力机床机械类型 磨床 组合机床龙门刨床拉床小型工程机械,农业机械,建筑机械,液压机重型机械,大中型挖掘机工作压力MP a0.82 35 28 810 1018 2032表 22 系统按载荷选择工作压力载荷 KN 50工作压力MP a5根据载荷和机械类型(小型工程机械)初选系统工作压力为 1018MP a2.3 计算液压缸的主要结构尺寸和液压马达的排量青岛理工大学本科毕业设计(论文)说明书72.3.1 液压缸的有关设计参数见下图图 24 受力示意图活塞杆受压时 F= =P A P A (21)WF1活塞杆手拉时 F= =P A P A (22)121式中 A = 无杆腔活塞有效作用面积( m )124D2A = 有杆腔活塞有效作用面积( m )2)(dP 液压缸工作腔压力(P )1 aP 液压缸回油腔压力,即背压力。其值根据回路的具体情况而定,初算时可参照2下表。D活塞直径(m)d活塞杆直径(m)表 23 执行元件背压力青岛理工大学本科毕业设计(论文)说明书8系统类型 背压力 MP a简单系统或轻载节流调速系统 0.20.5回油路带调速阀的系统 0.40.6回油路设置有背压阀的系统 0.51.5用补油泵的闭式回路 0.81.5回油路较复杂的工程机械 1.23回油路较短,直接回油箱 可忽略不计一般液压缸在受压状态下工作,其活塞面积为A = (23)112pF须先确定 A 和 A 的关系,或是活塞杆径 d 与活塞直径 D 的关系,杆径比 ,其比2 Dd值可按下表选取表 24 按工作压力选取工作压力 MP a7.0d/D 0.50.55 0.620.70 0.7表 25 按速比要求确定 DdV 12/1.15 1.25 1.33 1.46 1.61 2d/D 0.3 0.4 0.5 0.55 0.62 0.71取 d/D=0.55活塞直径或缸径 D= (24))1(42PF液压缸直径 D 和活塞杆直径 d 的计算值要按国标规定的液压缸的有关标准进行圆整。如与标准液压缸参数相近,最好选用国产标准液压缸,免于自行设计加工。以下是常用液压缸内径及活塞杆直径青岛理工大学本科毕业设计(论文)说明书9表 26 常用液压缸内径 D40 50 63 80 90 100 110125 140 160 180 200 220 250表 27 活塞杆直径缸径速比40 50 63 80 90 100 1101.46322 28 35454550506055706380主臂液压缸的缸径 D ,取 P =12MP ,背压力 P =0.3MP 1 1a2aD = = =96.28(mm)1)(421PF)5.01(3.(78423取标准缸径 100mm活塞杆直径 d = =100 =55mm15.0副臂液压缸的缸径 D ,取 P =12MP ,背压力 P =0.3MP 2 21a2aD = = =127.97(mm)2)(421PF)5.0(3.(18423取标准缸径 150mm活塞杆直径 d = =150 =82.5mm,取标准活塞杆直径 85mm25.0倾斜液压缸的缸径 D ,取 P =12MP ,背压力 P =0.3MP 3 31a2aD = = =69.68(mm)3)(421F)5.01(3.(87423取标准缸径 80mm活塞杆直径 d = =80 =44mm,取标准活塞杆直径 45mm35.02.3.2 计算液压马达的排量青岛理工大学本科毕业设计(论文)说明书10取液压马达的机械效率为 0.9液压马达的排量为q = vPT2式中 T液压马达的载荷转矩(N.m)液压马达的进出口压差(P )21pa取 P =12MP ,P =0.3MPaaq = = =0.44 m /rvT9.0)312(74.6132.4 计算液压执行元件实际工作压力按最后确定的液压缸结构尺寸和液压马达排量,计算出工况时液压执行元件实际工作压力,见下表表 28 液压元件的系统压力工况 执行元件 载荷 背压力 P 2工作压力 P1计算公式主臂副臂工作台转动主臂液压缸72.8KN0.3MP a10MP a副臂和工作台转动副臂液压缸128.3KN0.3 MP a8MP a工作台倾斜 倾斜液压缸37.8KN0.3 MP a8MP aP =21ApF工作台回转 液压马达 0.73N.m0 MP a11MP aP qT212.5 计算液压执行元件实际所需流量根据最后确定的液压缸结构尺寸或液压马达的排量及其运动速度或转速,计算出各液压执行元件实际所需流量,见下表青岛理工大学本科毕业设计(论文)说明书11表 29 液压元件实际所需流量工况 执行元件 运动速度 结构参数 流量(L/S)计算公式主臂副臂工作台转动主臂液压缸0.02m/s A =0.007851m 20.157 Q= A V1副臂和工作台转动副臂液压缸0.02m/s A =0.017661m 20.353 Q= A V1工作台倾斜 倾斜液压缸0.02m/s A =0.005021m 20.1004 Q= A V1工作台回转 液压马达 400r/min q=0.08L/r 0.533 Q=qn2.6 制定系统方案和拟订液压系统图2.6.1 执行机构的确定 本机动作机构除工作台回转外,其他机构均为直线往复运动。各直线运动机构均采用单活塞杆双作用液压缸驱动,回转机构则用液压马达驱动。2.6.2 液压源的选择 为满足压力稳定的要求,在焊接工件时,保持工作台静止,液压缸保持一定得压力,除采用锁紧回路外,液压源采用远程调压回路,控制整个液压系统或局部支路油液压力,使之保持恒定或限制其最高值。液压系统中的压力调定必须与载荷相适应,才能既满足主机要求又减少动力耗损。将溢流阀的控制口上可再接一个压力较小的远程调压阀,满足稳定系统不同的工作压力的要求。青岛理工大学本科毕业设计(论文)说明书12图 25 调压回路2.6.3 主臂液压缸和副臂液压缸采用相同的工作回路当执行机构质量较大运动速度较高时,若突然换向或停止时,会产生很大的冲击和振动。为了减少或消除冲击,除了对执行机构本身采取一些措施外,也可以在液压系统上采取一些办法实现缓冲,这种回路也称为缓冲回路。在系统进油加上单向节流阀,调节单向节流阀开口量,限制流入液压缸的流量,达到缓冲的目的,和控制液压缸活塞移动的速度,达到控制工作台倾斜的速度。图 26 缓冲回路在液压缸的进油口加上液控单向阀,作为液压缸的支撑阀,有保压的作用,防止回油,保持系统的压力,在焊接工件时保持工作台的静止。青岛理工大学本科毕业设计(论文)说明书13图 27 单向锁紧回路另外在此加上锁紧回路,当换向阀处于中位时,使液控单向阀进油及控制油口与油箱相通,液控单向阀迅速封闭,液压缸活塞向左方向的运动被液控单向阀锁紧,向右方向则可以运动,故仅能实现单向锁紧。2.6.4 倾斜液压缸的工作回路倾斜液压缸的回路只有锁紧回路与主臂液压缸不同,其余相同。在进油和出油口都加上液控单向阀。在工程机械液压系统中常使用此类锁紧回路。当三位四通电磁换向阀处于中位时,两个液控单向阀进油及控制油口都与油箱相通,使两个液控单向阀迅速关闭,可实现对液压图 28 双向锁紧回路的双向锁紧。青岛理工大学本科毕业设计(论文)说明书142.6.5 液压马达的工作回路在液压马达与电磁换向阀之间加入安全补油回路,可保证液压马达的流量稳定,从而使工作台以均匀的速度的回转。2.6.6 拟订液压系统图和动作循环表表 210 电磁铁动作循环表电磁铁动作 2DT 3DT 4DT 5DT 6DT 7DT 8DT 9DT 10DT主臂倾斜 +主臂恢复 +副臂倾斜 +副臂恢复 +工作台倾斜 +工作台恢复 +工作台回转 + +工作台锁紧 + +青岛理工大学本科毕业设计(论文)说明书15图 25 液压系统青岛理工大学本科毕业设计(论文)说明书162.7 液压元件的选择2.7.1 液压泵的选择液压泵工作压力的确定 1P Ppp1P 是液压执行元件的最高工作压力,对于本系统,最高工作压力是液压马达的工作压力。P =11MP1a是泵到执行元件间总的管路损失,在此取 =0.5 MPp pa液压泵的工作压力为 P =11+0.5=11.5 MPpa液压泵的流量确定 2q vpmaxQK取泄露系数 K=1.2,Q 发生在工作台发生倾斜和回转时,axQ =0.690L/S(36.66L/min)maxq =1.2 =43.99L/minvp6.3选用 CBFE18 齿轮泵,工作压力级别为 E,16MP ,流量为 18ml/r,a额定转速为 2500r/min。2.7.2 电动机功率的确定取泵的总效率为 0.8P= =15KW336108.10452.7.3 液压阀的选择选择液压阀主要根据阀的工作压力和通过阀的流量青岛理工大学本科毕业设计(论文)说明书17表 210 液压阀明细表名称 数量 选用规格二位电磁换向阀 1 4WE5B6D/W22050NZ4溢流阀 1 DB10330/315 U三位电磁换向阀 3 4WE10J10/W22050NZ4单向节流阀 3 Z2FS1020/S2液控单向阀 3 SV10P20双向液控单向阀 1 F42直角单向阀 4 DFB10K1直动式溢流阀 2 DBDA6910/200电磁换向阀 1 4EW10E10/AW22050NZ4调速阀 1 QAF6/10DA2.7.4 液压马达的选择根据以上算出的排量选用 BYM80 型摆线液压马达,排量 80ml/r,转速为 10400r/min,最大工作压力为 12MP ,最大转矩为 105N/m。a青岛理工大学本科毕业设计(论文)说明书18第三章 传动部分设计计算3.1 齿轮的设计计算选用直齿圆柱齿轮,工作台的回转速度不高,选用 7 级精度, 1材料选择。由表(机械设计)选择小齿轮材料为 20C ,渗碳后淬火,硬度为 2 inrTM60HRC;大齿轮材料为 40C 调质后表面淬火,硬度为 50HRC。r选择小齿轮的齿数为 20,大齿轮 100,传动比为 i=5 3按齿面接触强度设计 4由设计计算公式d (31)t1321)(2.HEdZKT1)选载荷系数 K =1.3t2)计算小齿轮传递的转矩T = 12.56 N.mm (32)1150.9nP573.610.92 4103)由文献 1 表 107 查的选择齿宽系数 =1d4)由文献 1 表 106 查的材料的弹性影响系数 Z =189.8MPEa由文献 1 图 1021d 查的按齿面硬度查的小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限aHMP0lim aHMP502lim5)由式计算应力循环次数N =60 =60 216 (33)1hjLn)153082(155N = (34)2.430656)由文献 1 图 1019 取接触疲劳寿命系数 K =0.90,K =0.951HN2HN青岛理工大学本科毕业设计(论文)说明书197)计算接触疲劳许用应力取失效效率为 1%,安全系数 S=1,由式得(35)SKHNlim=540MP1a=522.5 MP2H计算小齿轮分度圆直径,代入 中较小的值Hd = mm(36)t1321)(2.EdZKT 97.)5.281(.341056.23. 8)计算齿宽b= =1 =79.97 mm (37)td1.97.模数 m= = =3.9985 mm (38)1Zt209)按齿根弯曲强度设计设计公式:m (39) 1 321)(FsadYZKT确定公式内的各计算数由文献 1 图 1020C 查的小齿轮的弯曲疲劳强度极限 ;大齿轮的弯aFEMP501曲强度极限 ;由文献 1 图 1018 取弯曲疲劳寿命系数 K ,KaFEMP3802 85.1FN;8.02FN计算弯曲疲劳许用应力。取弯曲疲劳安全系数 S=1.4,由 得SKNlim(310) aFENF MPSK57.304.185011aFEF 86.2.22青岛理工大学本科毕业设计(论文)说明书20计算载荷系数 K。K= (311)512.3.12.FVA查取齿形系数由文献 1 的表 105 查的 Y ;Y80.1Fa8.2Fa查取应力校正系数由文献 1 的表 105 查的 Y ;Y5.1Sa79.12Sa10)计算大小齿轮的 并加以比较Fa= =0.0142965 (312)1FSaY57.3082= =0.0178132FSa6.9大齿轮的数值大设计计算 2m 3.974mm32401783.198.5.对于此结果,由齿面接触疲劳强度计算的模数 m 大于由齿根弯曲疲劳强度计算的模数,由于齿轮模数大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径有关,可取由弯曲强度算的的模数 3.974 并圆整为标准值 4mm,按接触强度算得的分度圆直径 d ,算出小齿轮的齿数97.1Z (313)20974.31md大齿轮齿数 Z 152这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到了结构紧凑,避免浪费。11)几何尺寸计算计算分度圆直径 1d =80mm420mZ青岛理工大学本科毕业设计(论文)说明书21d 100 =400mm (314)mZ24计算中心距 2a= 240mm (315)20821计算齿轮宽度 3b= (316)md801取 B ;B253.2 轴的设计计算3.2.1 计算轴的直径选用材料 45 钢,经调质处理,由表查的材料力学性能数据为: abMP650s3a271P5E=2.15 10 MPa工作台和工件的估计重量 1.3t,G=1300 9.8=12740N偏心距 e=20mm,高度 h=150+400=550mm= 61.1MPKn1.5.270a直径 d 85.8mm32ehG362210.58910取 d=86mm3.2.2 轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构的尺寸。轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的青岛理工大学本科毕业设计(论文)说明书22类型,尺寸,数量以及和轴连接的方法;载荷的性质,大小,方向及分布情况;轴的加工工艺等。由于影响轴的结构因素多,且其结构形式又要随着具体情况的不同而异,所以没有标准的结构形式。设计时必须针对不同情况进行具体分析。但是,不论何种具体条件,轴的结构都应满足:轴和装在轴上的零件要有准确的工作位置;轴上的零件应便于拆装和调整;轴应具有良好的制造工艺性。下图是回转机构的主轴的结构图轴上零件的定位:为了防止轴上零件受力时发生沿轴向或周向的相对运动,轴桑零件除了有游动或空转的要求外,都必须进行轴向或周向定位,以保证其准确的工作位置。图 31 轴的结构示意图3.2.3 轴的强度校核计算按弯扭合成强度条件计算通过轴的结构设计,轴的主要尺寸,轴上零件的位置,以及外载荷和支反力的作用位置均已确定,轴上的载荷(弯矩和扭矩)已可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。步骤如下:做出轴的计算简图(力学模型) 1做出弯矩图 2Fr青岛理工大学本科毕业设计(论文)说明书23FtFnFnv1 Fnh1 Fnv2 Fnh2L1 L2 L3FrFhv1 Fnh2Mv1FnFnv1 Fnv2TMv1Mv2M1M2青岛理工大学本科毕业设计(论文)说明书24T图 3.2校核轴的强度 3F (317)12dTtF (318)tanrF (319)costn式中 T 小齿轮传递的转矩,N.m;1d 小齿轮的节圆直径,对标准齿轮即为分度圆的直径,mm;啮合角,20 度F = =3140 Nt80156.24F =3140 Nr72tanF 17656 N20cos74n危险截面的转矩与扭矩:青岛理工大学本科毕业设计(论文)说明书25T 3531 N.m21DFnM 4185 N.mVH已知轴的弯矩和扭矩,可针对危险截面做弯扭组合的强度校核计算。按第三强度理论,计算应力(式 320)24ca通常由弯矩产生额的弯曲应力 是对称循环应力,而由扭矩产生的扭转切应力则常不是对称循环应力。为了考虑两者循环特性不同的影响,引入折合系数 ,则 计算应力为= 187MP a270MP224)( ca WTMTW2222 )()(4)( a轴满足强度要求青岛理工大学本科毕业设计(论文)说明书26结论本论文结合 0.5t 液压伸臂式焊接变位机的基本要求和特点,对液压系统进行了设计以及计算,所做的工作主要有以下几个方面:(1) 液压系统的分析(2) 液压伸臂式焊接变位机的组成(3) 液压伸臂式焊接变位机的工作原理(4) 液压系统、回转机构中的传动部分的设计计算(5) 回转机构装配图的绘制(6) 液压伸臂式焊接变位机装配图的绘制(7) 回转机构箱体零件的绘制青岛理工大学本科毕业设计(论文)说明书27参考文献1 浦良贵 纪名刚 . 机械设计 第八版. M 北京:高等教育出版社,2006.2 中国机械工程学会 焊接学会 . 焊接手册 焊接机构. J 北京:机械工业出版社,1992.13 机械设计手册编委会 机械设计手册 4 (液压分册) M 北京:机械工业出版社 20044 王积伟 章鸿甲 黄谊. 液压传动 M第二版 北京:机械工业出版社 20065 沈世瑶. 焊接方法及设备. J 北京:机械工业出版社,1982.6 上海船舶工业设计研究院 机械工业部第五设计研究院 北京船舶工程第五设计研究所. 焊接设备选用手册. M 北京:机械工业出版社,1984.7 机械设计手册 新版 3.M 北京:机械工业出版社.8 机械设计手册 第二版. M 北京:机械工业出版社.9 周寿森. 焊接机构生产及装备. M 北京:机械工业出版社,1999.10 刘鸿文. 材料力学. M 北京:高等教育出版社,2006.11 张海根. 机电传动控制. M 北京:高等教育出版社,2001.12 陈于萍 周兆元. 互换性与测量技术基础. M 北京:机械工业出版社,2007.13 李庆芬 朱世范 陈其廉. 机电工程专业英语. M 哈尔滨:哈尔滨工程大学出版社,2007.14 Hirokazu Araya ,Masayuki Kagoshima,Semi-automatic control system for hydraulic shovel J Kobe Steel, Ltd., Nishi-ku, Kobe Hyogo,2007青岛理工大学本科毕业设计(论文)说明书28后记大学生活即将结束,毕业设计是对大学四年学过的知识的总结,是对各科专业课的运用的检验。毕业设计的制作培养我们灵活运用知识,独立思考的能力,这些在以后的工作中至关重要。回首设计的这段时间,感到收获很多。首先毕业设计给了我们把四年学到知识进行一次系统复习,综合运用的机会。在此次设计中,设计步骤上有时确实有很大的困难,不过通过积极地讨论和互相帮助学习解决了不少,真正感受到团队协作的重要性。这些都为即将踏上工作岗位的我们有很大的帮助。在设计中我始终都受到刘老师的精心指导。通过不断地努力,改进自己方案中的错误,按时的完成了设计任务。在即将离开校园的时候向老师们道声:谢谢!青岛理工大学本科毕业设计(论文)说明书29附件 1外文资料翻译液压挖掘机的半自动控制系统 Hirokazu Araya ,Masayuki Kagoshima日本机械工程研究实验室 Kobe Steel, Ltd., Nishi-ku, Kobe Hyogo 651 2271,2000 年 7 月 27 日摘要开发出了一种应用于液压挖掘机的半自动控制系统。采用该系统,即使是不熟练的操作者也能容易和精确地操控液压挖掘机。构造出了具有控制器的液压挖掘机的精确数学控制模型,同时通过模拟实验研发出了其控制算法,并将其应用在液压挖掘机上,由此可以估算出它的工作效率。依照此法,可通过正反馈及前馈控制、非线性补偿、状态反馈和增益调度等各种手段获得较高的控制精度和稳定性能。自然杂志 2001 版权所有关键词:施工机械;液压挖掘机;前馈;状态反馈;操作1引言液压挖掘机,被称为大型铰接式机器人,是一种施工机械。采用这种机器进行挖掘和装载操作,要求司机要具备高水平的操作技能,即便是熟练的司机也会产生相当大的疲劳。另一方面,随着操作者年龄增大,熟练司机的数量因而也将会减少。开发出一种让任何人都能容易操控的液压挖掘机就非常必要了1-5。液压挖掘机之所以要求较高的操作技能,其理由如下。青岛理工大学本科毕业设计(论文)说明书301.液压挖掘机的操作,至少有两个操作手柄必须同时操作并且要协调好。2.操作手柄的动作方向与其所控的臂杆组件的运动方向不同。例如,液压挖掘机的反铲水平动作,必须同时操控三个操作手柄(动臂,斗柄,铲斗)使铲斗的顶部沿着水平面(图 1)运动。在这种情况下,操作手柄的操作表明了执行元件的动作方向,但是这种方向与工作方向不同。如果司机只要操控一个操作杆,而其它自由杆臂自动的随动动作,操作就变得非常简单。这就是所谓的半自动控制系统。开发这种半自动控制系统,必须解决以下两个技术难题。1. 自动控制系统必须采用普通的控制阀。2. 液压挖掘机必须补偿其动态特性以提高其控制精度。现已经研发一种控制算法系统来解决这些技术问题,通过在实际的液压挖掘机上试验证实了该控制算法的作用。而且我们已采用这种控制算法,设计出了液压挖掘机的半自动控制系统。具体阐述如下。青岛理工大学本科毕业设计(论文)说明书312液压挖掘机的模型为了研究液压挖掘机的控制算法,必须分析液压挖掘机的数学模型。液压挖掘机的动臂、斗柄、铲斗都是由液压力驱动,其模型如图 2 所示。模型的具体描述如下。2.1 动态模型6 青岛理工大学本科毕业设计(论文)说明书32假定每一臂杆组件都是刚体,由拉格朗日运动方程可得以下表达式: 其中 g 是重力加速度;i 铰接点角度;i 是提供的扭矩;li 组件的长度;lgi 转轴中心到重心之距;mi 组件的质量;Ii 是重心处的转动惯量 (下标 i=1-3;依次表示动臂,斗柄,铲斗) 。2.2 挖掘机模型每一臂杆组件都是由液压缸驱动,液压缸的流量是滑阀控制的,如图 3 所示。可作如下假设:1.液压阀的开度与阀芯的位移成比例。2.系统无液压油泄漏。3.液压油流经液压管道时无压力损失。4.液压缸的顶部与杆的两侧同样都是有效区域。在这个问题上,对于每一臂杆组件,从液压缸的压力流量特性可得出以下方程:青岛理工大学本科毕业设计(论文)说明书33当时;其中,Ai 是液压缸的有效横截面积;hi 是液压缸的长度;Xi 是滑芯的位置;Psi 是供给压力;P1i 是液压缸的顶边压力;P2i 是液压缸的杆边压力;Vi 是在液压缸和管道的油量;Bi 是滑阀的宽度; 是油的密度;K 是油分子的黏度;c 是流量系数。2.3 连杆关系在图 1 所示模型中,液压缸长度改变率与杆臂的旋转角速度的关系如下:(1)动臂(2)斗柄青岛理工大学本科毕业设计(论文)说明书34(3)铲斗 当 时,2.4 扭矩关系从 2.3 节的连杆关系可知,考虑到液压缸的摩擦力,提供的扭矩 i如下 其中,Cci 是粘滞摩擦系数;Fi 是液压缸的动摩擦力。2.5 滑阀的反应特性 滑阀动作对液压挖掘机的控制特性产生会很大的影响。因而,假定滑阀相对参考输入有以下的一阶延迟。青岛理工大学本科毕业设计(论文)说明书35其中, 是滑芯位移的参考输入; 是时间常数。3 角度控制系统如图 4 所示, 角基本上由随动参考输入角 通过位置反馈来控制。为了获得更精确的控制,非线性补偿和状态反馈均加入位置反馈中。以下详细讨论其控制算法。3.1 非线性补偿在普通的自动控制系统中,常使用如伺服阀这一类新的控制装置。在半自动控制系统中,为了实现自控与手控的协调,必须使用手动的主控阀。这一类阀中,阀芯的位移与阀的开度是非线性的关系。因此,自动控制操作中,利用这种关系,阀芯位移可由所要求的阀的开度反推出来。同时,非线性是可以补偿的(图 5)。青岛理工大学本科毕业设计(论文)说明书363.2 状态反馈建立在第 2 节所讨论的模型的基础上,若动臂角度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东体育学院《文创设计》2025-2026学年第一学期期末试卷
- 山东中医药高等专科学校《公益广告策划与创作》2025-2026学年第一学期期末试卷
- 2025年宁波市工会社会工作者招聘35人备考题库含答案详解(轻巧夺冠)
- 浙江纺织服装职业技术学院《中国现代文学(2)》2025-2026学年第一学期期末试卷
- 山西警官职业学院《西方思想史》2025-2026学年第一学期期末试卷
- 厦门海洋职业技术学院《幼儿园区域活动设计与指导》2025-2026学年第一学期期末试卷
- 辽宁装备制造职业技术学院《电气控制与PLC控制技术B》2025-2026学年第一学期期末试卷
- 2025年张家界市教育局直属学校招聘真题
- 厨师面试技巧及常用问题解答
- 辽宁商贸职业学院《生物化学实验一》2025-2026学年第一学期期末试卷
- 员工信息登记表(标准版)
- 小学生必背古诗“飞花令”100令(低年级版)
- 上海市建设工程项目管理机构管理人员情况表
- 医疗器械经营企业培训记录
- 10KV开关柜验收报告
- 2023年中国-东盟博览会秘书处招聘笔试备考题库及答案解析
- 矿产资源与国家安全【备课精讲精研+能力拓展提升】 高二地理下学期 课件(湘教版2019选择性必修3)
- GB/T 21566-2008危险品爆炸品摩擦感度试验方法
- GB/T 10205-2009磷酸一铵、磷酸二铵
- 颈椎DR摄影技术-
- 自动化导论全套课件
评论
0/150
提交评论