产品统计质量控制方案研究说明书_第1页
产品统计质量控制方案研究说明书_第2页
产品统计质量控制方案研究说明书_第3页
产品统计质量控制方案研究说明书_第4页
产品统计质量控制方案研究说明书_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕 业 论 文题 目 产品统计质量控制方案研究 学 院 机械工程学院 专 业 工业工程 班 级 学 生 学 号 指导教师 二一 年 五 月 二十 日1第一章 绪论1.1 统计质量控制的背景1.1.1 统计质量控制的概念统计质量控制简称 SQC,是在质量控制图的基础上,利用数理统计方法控制整个生产过程,使质量控制得以数量化和科学化,从而预防性的控制产品质量的一种方法。SQC 的主要目标是保证所有的工序生产出的产品的质量特征值尽可能长地等于或接近于期望值,提高生产过程的工序能力,突破了单纯事后检验的局限性,通常也称为统计过程控制 SPC。1.1.2 国内外发展状况统计质量控制最早产生于 20 世纪 20 年代,在贝尔电话实验室工作的休哈特在1925 年提出了休哈特控制图,同年道奇提出了计数抽样检验方案。当时这样的方法并没有被完全重视理解,只在少数工厂中应用。在第二次世界大战期间,由于战时的需要,对武器数量和质量的需求,美国政府开始大力提倡统计质量控制,促使控制图和抽样检验的理论和方法得到进一步的发展和完善。在 1942 年,美国国防部将休哈特等一批专家召集起来,用数理统计的方法制定了一系列战时质量管理标准,在各地宣讲并强制推行。这一举措不但成功解决了美国军需品的质量问题,而且还使美国的军工生产在数量、质量以及经济上都迅速占据世界领先地位。第二次世界大战以后,日本为了振兴濒临崩溃的经济,从美国引入了质量管理的方法。在美国统计学家和质量管理专家的帮助下,日本的质量管理得到迅速发展,在短短不到 30 年的时间里,创建了日本式的质量管理,使日本的工业产品质量跃居世界前茅。美国著名的质量管理专家朱兰在考察了日本的经济后说:“日本的振兴是一次成功的质量革命” 。我国从 20 世纪 70 年代后期开始,吸取了日本的经验,结合本国的国情,有计划地普及和应用统计质量控制的管理方法,1978 年开始推行质量管理和统计技术,并在 1981 年成立了全国统计方法应用标准化技术委员会,现已初步形成了一个数理统计方法标准体系。通过不懈的努力,我国统计质量管理水平得到了逐步提高。1.2 六西格玛管理体系简介1.2.1 六西格玛管理的发展状况六西格玛管理是 20 世纪 90 年代初期摩托罗拉公司最早倡导的一项商务举措。近年来更多的公司(如通用电气、索尼、联合新号等)成功实施六西格玛的故事更2为华尔街所关注。六西格玛管理即系统地应用统计工具,来获取必要的知识,从而创造出比竞争对手更快、更好、更廉价的产品和服务。按部就班的、反复的将这些技能应用到筛选出的重要项目上,就会实现一定的利润增长。六 西 格 玛 管 理 立 足 于 生 产 的 过 程 , 以 定 义 、 测 量 、 分 析 、 改 进 、 控 制 的 结 构为 改 进 过 程 的 核 心 , 强 调 用 定 量 的 方 法 , 结 合 各 种 统 计 工 具 , 系 统 的 找 出 并 消 除质 量 形 变 过 程 中 的 缺 陷 , 通 过 对 过 程 的 持 续 控 制 和 改 进 , 追 求 卓 越 质 量 , 从 而 提高 客 户 满 意 度 。六 西 格 玛 关 注 的 是 在 一 个 过 程 中 管 理 者 能 测 量 出 多 少 “缺 陷 ”, 以 及 能 否 系统 地 找 出 消 除 缺 陷 的 方 式 , 并 尽 可 能 地 使 其 接 近 “零 缺 陷 ”。 所 以 它 用 比 过 去 更广 泛 的 视 角 来 改 进 业 绩 , 强 调 从 顾 客 的 关 键 要 求 和 企 业 经 营 战 略 的 焦 点 出 发 来 寻求 业 绩 突 破 的 机 会 , 六 西 格 玛 管 理 强 调 对 业 绩 和 过 程 的 度 量 , 提 出 挑 战 的 目 标 ,并 采 用 各 种 统 计 方 法 来 改 进 业 绩 , 为 顾 客 和 企 业 创 造 最 大 价 值 。六 西 格 玛 管 理 强 调 用 西 格 玛 水 平 来 衡 量 过 程 波 动 , 而 且 它 还 将 西 格 玛 水 平 与过 程 缺 陷 率 对 应 起 来 。 经 过 发 展 演 变 , 它 在 PDCA 的 基 础 上 提 出 了 一 套 支 持 过程 改 进 的 方 法 模 式 。 该 方 法 从 过 程 的 输 入 和 过 程 的 输 出 关 系 着 手 , 综 合 应 用 多 种统 计 方 法 工 具 , 找 出 影 响 输 出 的 关 键 性 因 素 , 提 高 对 过 程 的 认 识 度 及 控 制 水 平 ,从 而 实 现 过 程 的 改 进 。 在 六 西 格 玛 管 理 中 , 被 广 泛 认 同 并 使 用 的 是 过 程 改 进 模 式( DMAIC) 及 过 程 设 计 模 式 。1.2.2 六西格玛管理过程改进模式 DMAIC 简介六西格玛的过程改进模式 DMAIC 将过程分为五个阶段,每个阶段都有特定的需要完成的工作,并要求达到该阶段的要求。遵循 DMAIC 这一模式实施过程改进,可以得到循序渐进的效果。定义阶段(D):确定顾客的关键需求并识别需要改进的过程。工作内容主要包括:识别顾客的要求、设定项目目标、界定项目范围、明确项目条件、整理和分析数据、确认需要改进的工作流程。测量阶段(M):通过对现有的过程的评估确定问题分析的焦点和范围,识别影响过程输出的几个重要输入,并对测量系统的有效性进行评价。工作内容主要有:确定关键的产品质量特性和过程质量特性、收集数据、检验测量系统和测量过程能力。分析阶段(A):通过数据分析确定影响输出的少数几个重要的输入。主要工作有:收集和分析数据、建立和验证因果关系、确定关键因素。改进阶段(I):通过对几个重要的输入的改进,寻找优化过程输出的方案,使过程的缺陷或变异降低,是六西格玛改进方法的核心,其具体内容有:广泛征集改进建议、制定改进方案和实施改进。控制阶段(C):对改进后的过程程序化,并采用有效的控制方法保持过程改3进的成果,使过程持续运行在高水平上。本阶段的主要工作有:制定相应文件、明确过程处理的监控职责、实施过程监控。DMAIC 模式(图 1.1)在实施中,应用数理统计学技术为基础的工具进行数据收集、监视测量、问题分析、改进优化和控制效果,来达到增强顾客满意度、提高企业业绩的目的。DefineMeasureAnalyzeImproveControl图 1.1 DMAIC 流程图1.3 本文主要研究内容本 文 主 要 以 六 西 格 玛 管 理 方 法 的 思 路 为 主 线 , 以 统 计 质 量 控 制 为 方 法 , 展 开一 系 列 的 研 究 。产 品 的 功 能 分 解 , 制 造 业 成 品 一 般 都 比 较 复 杂 , 很 难 求 的 满 足 总 功 能 的 方 案 ,所 有 要 对 其 总 功 能 进 行 分 解 , 建 立 产 品 的 功 能 结 构 图 , 由 此 , 了 解 总 功 能 跟 各 个功 能 原 件 、 分 功 能 之 间 的 关 系 , 明 确 每 个 分 功 能 的 输 入 量 和 输 出 量 , 进 而 可 以 求的 各 分 功 能 的 功 能 原 解 , 将 求 得 的 各 功 能 原 解 有 机 的 结 合 起 来 , 就 可 以 求 得 系 统的 总 功 能 方 案 。产 品 的 关 键 质 量 特 性 是 决 定 和 影 响 产 品 质 量 的 关 键 少 数 质 量 特 性 , 起 源 于 顾客 需 求 , 在 需 求 分 析 , 方 案 设 计 、 结 构 设 计 与 详 细 设 计 阶 段 不 断 传 递 与 细 化 。 关键 质 量 特 性 是 决 定 和 控 制 产 品 质 量 的 基 本 信 息 单 位 , 是 产 品 质 量 的 遗 传 物 质 。 它们 能 够 极 大 的 影 响 产 品 的 顾 客 满 意 度 、 安 全 性 、 功 能 实 现 、 性 能 约 束 满 足 等 , 它们 需 要 额 外 的 控 制 手 段 来 减 少 潜 在 的 质 量 问 题 。本 文 , 主 要 研 究 内 容 , 就 是 针 对 S 企 业 生 产 的 数 字 屏 显 式 万 能 液 压 试 验 机产 品 , 设 计 一 套 适 用 于 它 的 统 计 质 量 控 制 系 统 。 首 先 就 要 对 该 型 号 的 试 验 机 进 行产 品 的 功 能 分 解 , 从 而 , 将 总 功 能 分 解 为 各 个 功 能 原 件 , 再 对 这 些 功 能 原 件 进 行关 键 质 量 特 性 分 析 。 在 确 定 了 产 品 的 关 键 质 量 特 性 以 后 , 运 用 质 量 统 计 的 方 法 ,对 其 进 行 加 工 过 程 的 统 计 过 程 控 制 , 最 终 实 现 , 对 影 响 产 品 质 量 的 关 键 部 件 的 控制 。41.4 研究方法与手段针对制造产品本身的统计质量控制,就是对其生产过程进行控制,具体到某一零件即对其工序过程进行控制。对于装配件,就是将顶层的关键特征按照工艺流程图进行分解,使关键特征传递到组件和零件级,控制较低级别的关键特征有助于保证装配级关键特征的受控。产品质量的好坏取决于工序质量,衡量工序质量的重要标志是工序能力,工序能力是指工序处于受控状态下的实际加工能力。在受控状态下,产品的质量特征因受各种各样的偶然因素干扰呈现出随即波动。这种随机波动导致了制造出来的各个产品其质量特性值呈正太或其他类型的统计分布。工序能力就是描述制造过程这种客观存在的分数程度的一个量值。影响产品的质量的因素可分为随机因素和系统因素,也可称为偶然因素和异常因素。使用控制图可以及时区分异常因素与偶然因素,起到及时警告的预防作用。本文主要运用以上几种方法,形成一个统计质量控制的体系。从而,对 S 企业的某型号产品进行质量控制,控制结果进行分析,最终完善生产过程中的不足,提高产品的最终质量。1.5 研究目的使 本 研 究 所 制 定 完 成 的 体 系 , 在 投 入 生 产 实 际 后 , 可 以 有 效 的 对 生 产 流 程中 的 关 键 加 工 工 艺 , 机 器 零 部 件 中 的 关 键 零 件 进 行 全 面 的 质 量 控 制 。 使 整 个 生产 流 程 更 加 合 理 化 , 关 键 零 部 件 的 质 量 可 靠 性 加 强 , 可 以 解 决 企 业 长 久 以 来 的 一些 问 题 , 从 而 使 企 业 降 低 质 量 缺 陷 和 服 务 偏 差 并 保 持 持 久 性 的 效 益 , 促 进 快 速 实现 突 破 性 绩 效 , 最 终 实 现 真 正 统 计 质 量 控 制 管 理 理 念 的 目 的 , 竟 可 能 的 接 近“零 缺 陷 ”, 从 顾 客 的 关 键 要 求 以 及 企 业 经 营 战 略 的 焦 点 出 发 , 使 业 绩 得 到 突 破 ,为 顾 客 和 企 业 创 造 最 大 价 值 , 最 终 帮 助 企 业 达 到 战 略 目 标 。在 此 基 础 上 , 结 合 S 厂 的 实 际 状 况 , 针 对 该 企 业 的 战 略 目 标 以 及 生 产 实 际 中的 问 题 , 在 不 改 变 原 有 生 产 模 式 的 基 础 上 , 对 各 个 关 键 工 序 进 行 控 制 , 以 达 到 预期 的 效 果 , 使 产 品 的 质 量 可 靠 性 , 最 优 化 。5第二章 相关理论综述2.1 问题的提出2.1.1 制造业面临的问题质量管理和质量保证体系标准在全球范围内的大力推广,以及市场经济日趋发达的今天,用户的质量意识得到了普遍的提高,用户一方面需求产品拥有一流的质量,另一方面又不希望产品的价格过高。任何企业都深刻地感受到了提高产品质量的重要性。产品质量已成为企业有效参与市场竞争的重要前提,为了提高企业在国际市场中的竞争优势,企业家积极的思考如何在这一形势下求生存、求发展的策略。传统的统计质量基于休哈特提出三西格玛质量控制图,监测控制同一产品的同一质量特征的变化规律,使之满足标准并保持稳定,它是以大量检测数据为前提。在日趋激烈的市场竞争和顾客对产品质量要求不断提高的如今,三西格玛质量管理已经满足不了时代的发展和顾客的要求了,至此更为严格的六西格玛质量概念得以应运而生。2.1.2 统计质量控制体系解决的问题制造业生产中的统计质量控制,主要是统计过程控制,统计过程控制是一种借助数理统计方法的过程控制工具。对生产过程进行评价分析,根据反馈信息及时发现影响系统的因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。当过程仅受随机因素影响时,过程就处于统计控制状态即受控状态;当过程中存在系统因素的影响时,过程就处于统计失控状态即失控状态。由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布;而失控时,过程分布将发生改变。统计质量控制正是利用过程波动的统计规律性对过程进行分析控制。因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。产品加工过程的质量是保证产品质量的关键,对产品的加工过程实行质量控制,是质量管理的重要环节,产品在加工过程中得质量好坏,在很大程度上取决于生产环节制造产品的工序质量和加工过程的质量管理水平。加工过程中导致产品缺陷的因素有很多,一般有制造人员的技术水平和责任心、组织管理、制造工艺水平及制造工艺流程、制造材料的选用和质量控制的合理性、制造设备的齐整和精度与维护保养水平、制造环境如何、质量与可靠性保证检验如何等。针对这些因素,为了做好和加强加工过程中的质量管理工作,实施六西格玛质量管理是非常必要的。试验机广泛用于科学研究、能源交通、冶金化工、机械电子等各个领域,是科研、生产必备的基本设备。在材料试验、新型材料开发、产品设计、产品质量监督和控制等Comment qyb1: 看起来像是引用的,如果真是,就得给出参考文献的引用标记。6方面发挥着重要作用。其质量的好坏将直接影响一系列的产品质量,因此,保证和提高液压式万能材料试验机的质量对促进我国的工业发展具有重要意义。2.2统计质量控制的基本原理2.2.1统计质量控制的原理生产过程中导致产品质量发生变异的因素有很多,包括人、机、料、法、环,即通常所说的 4M1E。按照它们对产品质量的影响不同,可分为随机因素和系统因素。随机因素是不可避免的,但它对产品质量的影响较小,在技术上不易识别,在经济上又不值得消除,例如温湿度的微小变化,机床的轻微振动等。但系统因素的影响是严重的,生产过程中如果存在系统因素,它将给产品质量带来很大的影响,例如刀具的过度磨损、操作者的疏忽等。判断系统因素的存在依据的规律,当生产过程中只有随机因素存在时,其质量特征一般形成正态分布,此时可以认为生产过程处于统计控制状态;一旦偏离正态分布,就可以判断存在系统因素,生产过程处于失控状态。虽然统计过程控制技术已发展到近百种,但他们都是基于一个相同的基本原理,即统计学中的小概率事件原理:在一次观测中,小概率事件是不可能发生的,一旦发生就认为系统出现问题。把此原理转化为工程技术语言可描述为“预先假定过程处于某一状态,一旦显示出偏离这一状态的极大可能就认为该过程失控,于是就对其进行及时调整” 。2.2.2统计质量控制常用的工具1)调查表调查表是为了调查产品、工作性质、客观事物和分层收集数据而设计的图表。调查表主要是用来系统的收集数据,发现过程的缺陷,以便做量化的分析。常用的调查表有记录调查表、缺陷位置调查表和分布调查表。记录调查表也称为不合格品项目调查表,可以记录一段时间内某几项特征出现的次数,或者是抽查的几批同型产品中各种缺陷出现的频次;缺陷位置调查表,运用于当产品的缺陷类型和其在产品上的位置有关的情况,可以直观的反映各种缺陷的位置和密集程度;分布调查表也称为质量分布调查表或者生产工序检验表,用以记录产品的某一项质量特性值的分布情况。2)分层法分层就是把所收集的数据进行合理的分类,把性质相同、在同一生产条件下收集的数据归在一起,把划分的组叫做“层” ,通过数据把错综复杂的影响质量因素分析清楚。3)直方图直方图是适用于对大量计量值数据进行整理加工,找出其统计规律,即分析数7据分布的形态,以便对其总体的分布特征进行推断,对工序或批量产品的质量水平及其平均程度进行分析的方法。4)散布图散布图是通过分析研究两种因素的数据之间的关系,来控制影响产品质量的相关因素的一种有效方法。在生产实际中,往往有些变量之间存在着相关关系,但又不能由一个变量的数值精确地求出另一个变量的数值。将这两种有关的数据列出,用点子打在座标图上,然后观察这两种因素之间的关系。这种图就称为散布图。 5)排列图排列图是通过找出影响产品质量的主要问题,以便改进关键项目。排列图最早由意大利经济学家巴累特用于统计社会财富分布状况的。他发现少数人占有大部分财富,而大多数人却只有少量财富,即所谓“关键的少数与次要的多数”这一相当普遍的社会现象。6)因果图因果图是表示质量特性与原因的关系的图。主要用于寻找质量问题产生的原因。因果图就是通过层层深入分析收集各种信息,比较原因大小和主次,来找出产生问题的主要原因。也就是根据反映出来的主要问题,找出影响它的大原因、中原因、小原因、更小原因等等。7)控制图控制图是判断和预报生产过程中质量状况是否发生波动的一种有效方法。所谓控制图的基本思想就是把要控制的质量特性值用点子描在图上,若点子全部落在上、下控制界限内,且没有什么异常状况时,就可判断生产过程是处于控制状态。否则,就应根据异常情况查明并设法排除。通常,点子越过控制线就是报警的一种方式。控制图作为一种管理图,在工业生产中,根据所要控制的质量指标的情况和数据性质分别加以选择。常用质量控制图可分为两大类:计量值控制图包括、计数值控制图。2.3 六西格玛的基本含义2.3.1 六西格玛的统计学含义六西格玛的统计学含义是标准差,是代表一组数据和过程结果输出的一个数量指标,是用来表示任意一组数据或过程输出结果的离散程度的一个指标,量化稳定或者不稳定的程度,它可以评估产品和流程的波动性。数据分散对于顾客来说就意味着经济损失,顾客感受的是得到的与期望得到的之间的差异。在六西格玛管理中,把顾客的需求和期望称为关键质量特性(CTQ)。六西格玛质量水平将过程输出的平均值、标准差与顾客要求的目标值、规格联系起来去比较,是对过程满足顾客要求能力的一种测量。西格玛水平越高,能容纳的标准差的个数就越高,数据就越集中8在目标附近,其分散程度相对于可接受的偏差范围来说就越少。反之,过程能力指数越低,产品质量满足不了顾客需求。六西格玛管理中的西格玛代表了很高质量水平,代表 100 万次机会只有 3.4 次缺陷。 在生产过程中,即使是再稳定,再好的过程能力的情况下,波动和偏移也总是存在的。长期质量水平必须考虑各种各样短期的情况和条件,在这种情况下的过程能力计算称之为长期过程能力。在计算长期过程能力时我们常常将正态分布的中心向左或者向右偏移 1.5 ,表 2.1 给出的是过程输出的质量特征平均值和规格中心同时向左或者向右偏移 1.5 ,的条件下不同 水平对应的产品优率和缺陷率的关系表。表 2.1 在偏移 1.5 情况下 与优率、缺陷率的关系表水平优率(%) 缺陷率(DPPM)1.0 30.23 6797002.0 69.13 3087003.0 93.32 668104.0 99.379 62105.0 99.9767 2336.0 99.99966 3.4根据管理咨询的先驱詹姆斯麦金锡的调查和研究,如果一个过程能力在 3 的公司组织其所有资源每一年将其过程能力提高 1 ,他将获得利润每年提高 20%,产品销售额每年提高 12%到 18%,员工减少 12%,资金注入将减少 10%到 30%,并且当过程能力提高到 4.8 之前,企业根本就不需要为过程能力的提高花费大量金钱,所以当今企业普及采用的是 6 能力的控制。2.3.2 六西格玛的管理学含义六西格玛是真正关注顾客的管理方法,通过对对公司满意的顾客和不满意的顾客以及潜在顾客的调查,通过客户的抱怨和市场反馈去理解客户需求,根据客户的需求制定公司目标和评估公司绩效,六西格玛改进和设计是以对顾客满意所产生的影响来确定。六西格玛原理则是从分辨什么指标是对测量经营业绩的关键开始的,然后收集数据并分析关键变量。六西格玛采取的措施是针对过程的,把所有的重复性的工作看为是一个流程,不仅是过程设计,服务的提供,还有绩效评估、顾客满意度的提高,甚至整个价值链的过程。六西格玛管理是一种积极的事前的管理方法,就是通常所说的预防性管理。预防即意味着在事件发生之前采取行动,而不是事后做出反应。9六西格玛强调无边界合作, “无边界”是 GE 公司的前任 CEO 杰克韦尔奇经营成功的口号之一。无边界合作消除了部门与部门之间,上级与下属之间的沟通障碍,他有助于避免公司内部的不良竞争,促进内部的水平合作和垂直合作。这样,就可以使每一个部门和员工都朝着同一目标努力,为顾客提供一流的服务和高质量的产品。六西格玛管理的无边界合作并不是要无条件地牺牲个人利益,而是要让每个人都知道最终消费者和整个过程的真正需求,更重要的是,它鼓励每个人都受益。六西格玛追求完美,但同时也可以容忍错误,追求完美和容忍错误看起来自相矛盾,其实是相辅相成的。新方法的实验和新思想新理念的执行总是会伴随一定程度的风险的,甚至最终会以失败告终。六西格玛管理的业绩改善的技术分析中包含了风险管理,这就要求我们去评估风险,六西格玛管理也应用了一些工具去把风险降到最低同时努力最求完美。2.4 六西格玛管理的常用工具六西格玛在不同的阶段会用到一些不同的工具,六西格玛要求有工具的支持,表 2.2 是在各个阶段六西格玛常用的一些工具。表 2.2 六西格玛各阶段常用工具阶段 关键点 常用工具定义 决定输出因素 1.头脑风暴 2.VOC 3.流程图 4.鱼骨图测量 测量输入和输出因素 1.柏拉图 2.散布图 3.FMEA 4.MSA5.直方图 6.检查表分析 确定关键原因 1.假设检验 2.ANOVA 3.DOE 4.回归分析改进 消除关键原因 1.响应曲面 2.过程优化 3.正交 DOE 4.MSA控制 维持现状 1.控制图 2.标准化 3.SPC 4.Pola-YokaComment qyb2: 框图内字体不要用加黑10第三章 控制系统的总体设计3.1产品的功能分解制造业成品一般都比较复杂,很难求的满足总功能的方案,所以要对其总功能进行分解,建立产品的功能结构图,由此,了解总功能跟各个功能原件、分功能之间的关系,明确每个分功能的输入量和输出量,进而可以求得各分功能的功能原解,将求得的各功能原解有机的结合起来,就可以求得系统的总功能方案,这就是产品的功能分解。3.1.1产品的工序分解针对制造产品本身的统计质量控制,就是对其生产过程进行控制,具体到某一零件即对其工序过程进行控制。对于装配件,就是将顶层的关键特征按照工艺流程图进行分解,使关键特征传递到组件和零件级,控制较低级别的关键特征有助于保证装配级关键特征的受控。工序质量控制的流程图如图 3.1:否否是是是是是否否否否确定关键特性建立关键特征 把关键特征和工程规范记入控制计划确定测量关键特征的工步选择合适的控制图在控制计划中记录工步控制图、样本量和抽样频率收集控制数据并保持控制图收集新的测量数据 更新过程数据库或历史记录关键特征是否处于统计控制状态是否对测量系统采取了纠正措施是否做过量波动研究已形成文件关键特征是否满足最低的能力需求能确定引起波动的特殊原因吗?进行量具波动研究并把研究结果记入控制计划消除引起波动的特殊原因关键特征满足最低需求确定潜在的过程波动源将过程波动源与关键特征联系起来对关键过程参数进行控制在控制计划中记录操作方法、关键过程参数、过程参数设置值和控制方法图 3.1 工序质量控制流程图11对产品的生产工艺流程图进行了解,再对每个工序流程进行深入的分析,并绘制详细的工序流程图。根据流程图,对产品的功能进行分解,确定产品的质量控制的关键零件,确定它的关键质量特性,从而对其进行工序质量控制。3.1.2 确定关键特征产品工艺过程的关键零件、关键工序以及光洁质量特性是产品生产过程的关键质量控制点,必须确定和测量关键特征的波动,并保证关键特征处于统计控制状态,即受控状态。确定质量控制点的几条原则:1)对产品精度、性能、安全、寿命等有重要影响的质量特征部位;2)工艺上有特殊要求,或对下道工序有较大影响的部位,如机械加工中的工艺基准;3)质量不稳定,容易出现不合格品的工序;4)顾客或下道工序反映质量问题较多的零件和工序。确定关键特征的要点:1)关键特征应是少量的,通常单独的零件可确定 2、3 个关键特征;2)关键特征的设置不是一成不变的,可以随着时间的推移而改变;3)关键特征是可测量的,并应尽可能使用计量型数据。3.2 抽样检验3.2.1 抽样检验的基本思想是从整批产品中随机抽取部分产品作为样本,根据对样本的检验结果,使用一定的判断规则,去推断整批产品的质量水平。其目的在于判断一批产品或一个过程是否可以被接受。检验对象为一批产品,经检验的合格批中可能包含不合格品,不合格批中也可能包含合格品。3.2.2 常用的抽取样本的方法随机抽样方法,可细分为单纯随机抽样、分层随机抽样、分群随机抽样。单纯随机抽样是从总体样品中随机抽出 n 个样品,分层随机抽样是事先对总体进行分层,以保证当总体庞杂,内部存在较大差异时,有利于保证样本的代表性;分群随机抽样是指将被调查的总体区分为若干群体,以随机抽样法选定群体并对其进行调查的方法。系统抽样法是依据一定间距抽取样本,采用系统抽样法,应对总体中的单位或个体进行编号,并要确定样本间距数。采取系统抽样法抽出的样本,能够使样本均衡地分散在总体的各单位中,不会过分集中于某些单位,从而有利于增强样本的代表性,并且抽样的方法简便易行。3.3 控制图的应用123.3.1 工序能力产品质量的好坏取决于工序质量,衡量工序质量的重要标志是工序能力,工序能力是指工序处于受控状态下的实际加工能力。在受控状态下,产品的质量特征因受各种各样的偶然因素干扰呈现出随即波动。这种随机波动导致了制造出来的各个产品其质量特性值呈正太或其他类型的统计分布。工序能力就是描述制造过程这种客观存在的分数程度的一个量值。通常用 B 表示,通过用工序受控状态下产品质量特征值的标准差的 6 倍来刻划,即: 。6是表征工序能力的一个关键参数。 越大,工序能力越低, 越小,工序能 力越高。图 3.2 示意了三种不同的工序能力,三条曲线分别代表了三个不同的生产过程状态,其中,加工能力以西格玛 代表的工序为最高, 次之,最差的是质量1 2特征标准值标准差为 的工序。3y=1.53=1.02=0.51x图 3.2 不同的工序能力3.3.2 控制图的原理控制图(图 3.3)上有三条线,分别为:中心线 CL,上控制线 UCL,下控制线LCL,用时间顺序作为控制图的横坐标,用统计量的数值作为控制图的纵坐。Comment qyb3: 随即因素,错别字13下控制界线(LCL)上控制界线(UCL )中心控制线(CL)时间顺序系统因素随即因素随即因素系统因素统计量的数值图 3.3 控制图原理对于服从或近似服从正态分布的统计量,可以按 原则绘制控制图。假设统计3量服从正太分布 XN( , ),产品质量计量值在 与 上下界限之间2-出现的概率约为 99.73%。控制图的上下界限约为:(3.1)UCL(3.2)(3.3)3影响产品的质量的因素可分为随机因素和系统因素,也可称为偶然因素和异常因素。使用控制图及时区分异常因素与偶然因素,起到及时警告的预防作用。3.3.3控制图的判断准则判稳准则 1)连续 25个点,界外点数 d=0;2) 连续 35个点,界外点数 d 1;3)连续 100个点,界外点数 d 2。判异准则 1)点出界就判异;2)界内点排列不随机就判异。a.连续 7点或更多的点在中心线同一侧;b.连续 7点或更多点呈上升或下降趋势;c.连续 11点中至少有 10点在中心线同一侧;d.连续 14点中至少有 12点在中心线同一侧;e.连续 17点中至少有 14点在中心线同一侧;14f.连续 20 点中至少有 16 点在中心线同一侧;g.连续 3 点中至少有 2 点或连续 7 点中至少有 3 点落在 2 倍与 3 倍标准差控制界限之间;h.点集中在中心线附近;i.点呈周期性变化。无论是控制图上的点超出控制界限外或恰好在界限上,还是控制界限内的点排列方式有缺陷,呈现非随机排列,这两种情况都说明生产过程中存在系统性的因素,对某个质量特征的平均值和标准差产生影响。利用控制图判断生产过程是否稳定,实质是利用样本数据进行的统计推断。既然是统计推断,就不可避免地会出现两种错误:第一种是将正常的过程判为异常,即生产仍处于统计控制状态,但由于偶然性原因的影响,使得点子超出控制界限,从而虚发警报将生产过程判为异常。出现这种情况的概率为 0.27%,即犯这种错误的概率称为第一种风险,记做 。第二种错误是将异常判断为正常,即生产过程已经有了异常,产品质量的分布偏离了典型分布,可是总还有一部分产品的质量特征值是在上下控制界限之内的。如果我们抽取到这样的产品进行检验,那么,这是由于点未出界而判断生产过程正常,就犯了漏发报警的错误,这种错误就叫做第二种错误。即犯这种错误的概率称为第二种风险,记做 。其中, 于 的关系是此消彼长的。15第四章 针对 S 企业的控制系统的实例设计4.1 液压机产品的功能分解S 企业是一家老牌的试验机生产企业,公司主要生产微机屏显压力试验机、微机控制全自动压力试验机、微机控制电液伺服万能试验机电子万能试验机等试验机产品,所生产的设备主要用于公路、铁路、水利、建筑工程、大专院校、科研单位等领域。公司拥有专业的科研机构和设计开发人员,具有雄厚的技术力量。公司自成立以来,为更好的满足市场及广大用户的需求,新产品层出不穷,始终保持国内领先水平,在日益严峻的市场竞争中,S 企业在产品质量方面也希望再有一些突破。试验机广泛用于科学研究、能源交通、冶金化工、机械电子等各个领域,是科研、生产 必备的基本设备。在材料试验、新型材料开发、产品设计、产品质量监督和控制等方面发挥着重要作用。例如,机械和电子工业为了确保产品及其关键零部件或材料的质量和可靠性,需要进行各种性能的检查和测试:金属或非金属材料的力学性能检测;铸锻件或零部件内部缺陷的无损检测;大型设备和建筑构件的整体结构安全性能检测等等。试验机是重要的现代科学仪器之一。所以,保证其的质量是非常有必要的。4.1.1 万能液压试验机产品简介试验机是用于研究与检查材料、零部件、各类产品的力学性能与可靠性的测试仪器。共分为十大类:金属材料试验机,非金属材料试验机,平衡机,无损检测仪器,振动台与冲击台,力与变形检测仪器,摩擦磨损、润滑与工艺试验机,包装件试验机,大型结构试验机及汽车专用测试设备。试验机是光机电等一体化、技术密集的高科技产品,品种繁多。其中,金属非金属材料试验机,力与变形检测仪器等具有计量仪器的特征,其技术指标需符合国家相应量值传递标准。现在,广泛使用的试验机是万能液压试验机产品,集拉、压、扭、切于一体的试验机设备,其原理图如图 4.1:16图 4.1 液压式万能材料试验机原理图图示万能材料液压试验机得原理是:在机器底座 1 上,装有两根固定立柱2,它支承着固定横梁 3 和工作油缸 4,当开动油泵 14,将油液从油箱经送油管送入工作油缸,从而推动工作活塞 5、上横梁 6、活动立柱 7 和活动台 8 上升。若将试件两端装于上下夹头 9、10 中,由于下夹头固定不动,当活动台上升时便使试件发生拉伸变形,承受拉力,便可做拉伸实验;若把试件放在活动台上面的下垫板 12 上,当活动台上升时,就使试件与上垫板 12 接触而被压缩,承受压力,便可做压缩实验;若把试验梁放在活动台上的两个弯曲支座 11 上,当活动台上升时,就使试验梁的跨中和弯曲压头(取掉上垫板换成弯曲压头)接触而使试验梁承受弯曲,便可作弯曲试验;若在上、下夹头间装上拉伸式剪切器,则可对材料作剪切试验。此种试验机在输油管路中都装置有进油阀门和回油阀门,进油阀门用来控制进入工作油缸中的油量,以便调节试件变形速度,回油阀门则是用来将工作油缸中的油液泄回油箱,使活动台由于自重而下落,回到原始位置。为了适应不同长度试样要求,可开动下夹头电动机 27 转动底座中的蜗轮 15 使螺柱 13 上下移动,以调节上下夹头间的距离。但当试件夹紧或受力后,就不能再用下夹头电动机加载,否则,会将下夹头电动机烧毁或使机件损坏。装在试验机上的试件所受力的大小,可在测力度盘 16 上直接读出。试件受力后,工作油缸中的油具有一定的压力。这压力的大小与试件所受载荷的大小是成比例的。用测力油管将工作油缸 4 与测力油缸 17 相联通,则测力油缸就受到与工作油缸相等的油压。此油压就推动测力活塞 18 向下顶推拉杆 19,使摆杆 20 和摆锤 21 绕支点22 转动。试件所受的力愈大,摆锤转角也愈大。摆杆转动时,它上面的推杆 23 便17推动水平齿杆 24,从而使齿轮带动测力指针 25 旋转,这样便可以从测力度盘上读出试件所受力的力的大小。摆锤的重量可以调换,一般试验机可以更换三种锤重,测力度盘上也相应有三种刻度。实验时,要根据试件所需载荷的大小选择合宜的测力度盘,并在摆杆上放置相应的摆锤。S 企业生产的试验机,都是数显式液压万能试验机,这种试验机主要由三部分组成:主机、油源、微型计算机处理系统。主机原理与结构如图 4.2,负载和框架为单空间,油缸与活塞间采用密封圈密封,分别以负荷传感器和位移传感器测量负荷与位移。油源由壳体、阀操纵装置、换向阀、控制阀、配电盘、油泵、电机和油箱组成。油源为该机提供所需流量和压力。通过换向阀可实现对油缸上下腔控油。通过操纵阀可实现加载卸载试验力与控制加力速度。微型计算机处理系统将负荷传感器的信号,经过测量放大器进行处理放大,输出相应模拟信号。通过 A/D 板,将模拟信号转换成数字信号。试验时,把采集的数字信号作为试验数据按程序存入计算机内存中。这些数据可反映试验过程,并包含试验材料全部信息。试验完毕,计算机用存入的数据进行各种必要的数学运算,得到最终的试验结果。图 4.2 数显式液压万能试验机原理结构图1-机座 2- 立柱 3-夹具 4- 活动横梁5-顶梁 6-微型计算机处理系统 7-油源对于该种数显式液压万能试验机,它的微型计算机处理系统这一部分,不属于产品生产过程中的原件,所以,在本文的研究当中,不考虑其对试验机产品质量的影响。以下,只对,数显式液压万能试验机的主机部分和油源部分,即加载部分进18行分析。4.1.2 试验机加载部分的功能分解产品的功能分解有两种形式:第一种是按照解决问题的因果关系或手段目的进行分解,如车床的总功能是切削工件,为了实现切削工件就必须旋转工件和移动工具,前者为目的,而后者为两个并列的手段。由于中间功能有目的和手段的相对性,在明确它作为手段功能的同时,也就自然地明确了它本身所具有的目的特征,这就需要再继续寻找这两个手段功能的下一级手段功能。为了旋转工件,就必须夹持工件和传递转力,前者为目的,而后者为两个并列的手段。为了移动刀具,就必须夹持刀具和传递动力,前者为目的,而后者为两个并列的手段。第二种使按照机械产品工艺过程的空间顺序或时间顺序进行分解。功能分解的一般原则是:按输入量转换为输出量所需的物理原理比较单一、易于求解的方法进行分解。功能分解的结果一般用功能树来表示。试验机的加载部分的主功能是载荷的施加与卸除,这两个功能是由电机带动油泵工作,从而使工作油缸内的油液产生载荷来实现的;位移功能主要是升级的运动,由活动立柱和活动横梁来实现,下夹头的位移由低端的螺柱来实现;装夹功能,主要是上夹头和下夹头的配合;承载功能由固定立柱和底座来实现。功能分解结果的功能树如图 4.3 所示:试验机加载部分活动立柱活动横梁螺柱工作油缸立柱底座上夹头下夹头升降功能加载卸载承载功能装夹功能位移功能主功能图 4.3 试验机加载部分的功能分解树产品的质量关键工艺是指对产品精度、性能、安全、寿命等有重要影响的质量特征部位;工艺上有特殊要求,或对下道工序有较大影响的部位,如机械加工中的工艺基准;质量不稳定,容易出现不合格品的工序;顾客或下道工序反映质量问题较多的零件和工序。4.1.3 产品的工序分解要确定影响产品质量的关键特性,就要对零件的加工工艺进行分解,分解为一道道工序,确定影响零件质量的关键工序。分解零件的工艺,采用工艺流程图。对19于实验机加载部分的功能分解树,进行工艺流程分解图,如图 4.4:粗车半精车精车镗削铣削钻削研磨喷漆粗车精车热处理磨削油缸 立柱刨削镗削钻削磨削喷漆横梁 螺柱夹具底座粗车车削磨削车削钳加工精车热处理磨削粗刨镗削粗刨钳加工精刨车削钻削铣削热处理 磨削铣削镗削钻削磨削喷漆图 4.4 工艺流程图从工艺流程图,结合该产品的零件的使用功能,很容易可以看出影响产品质量功能的关键工序。以下本文以立柱为研究对象展开生产过程的质量控制,对于立柱来说,产品的功能实现是活动横梁的位移和承载功能,影响这两个功能是靠立柱的表面质量和塑性、韧性、刚度决定的,对应到工序就是精车、热处理和磨削这三道加工工序。4.2 对产品关键工艺的控制4.2.1 绘制控制图对生产的所有的产品都进行生产的过程控制是不切实际的,所以要进行抽样控制。对于立柱的表面质量,以表面粗糙度和尺寸为检验量,对于热处理,以产品的塑性、韧性、刚度为检验量。以下以对影响产品的表面质量的磨削工序为研究对象,对产品的表面粗糙度为检测对象。从总的批量 N 中抽取样本数 n,样本组数为 k。选用均值级差控制图,根据采集的数据,列出均值级差数据表 4.1:20表 4.1 控制图数据表R-x序号 1x23 nxR123kkxRN 2A4D控制图xCLRAU2xR 控制图CLDU40系数表 查计量值控制图系数表查计量值控制图系数表根据表中计算出的数据,以 k 为横坐标 、R 为纵坐标,绘制 图、R 图,图 4.5。xx图xR 图k LCLCLULCLCLCLkULC图 4.5 立柱表面质量的 图R-x对控制图进行分析,如果,所以点都在控制界限之内,且排列无缺陷,则次工21序处于受控状态。如果,点越出控制界限或者连续 7 点或更多的点在中心线同一侧;连续 7 点或更多点呈上升或下降趋势;连续 11 点中至少有 10 点在中心线同一侧;连续 14 点中至少有 12 点在中心线同一侧;连续 17 点中至少有 14 点在中心线同一侧;连续 20 点中至少有 16 点在中心线同一侧;连续 3 点中至少有 2 点或连续 7 点中至少有 3 点落在 2 倍与 3 倍标准差控制界限之间;点集中在中心线附近;点呈周期性变化。那么次工序就处于失控状态。4.2.2 失控状态分析利用因果图 4.6,对影响工序质量,使其处于失控状态的因素进行分析。对影响质量的因素一个一个的进行改善,可以提高产品的最终质量。磨料力度材料缺陷尺寸不准前道工序 纪律不严 操作工工作马虎技术不好砂轮流卡丢失工序颠倒图纸混乱要求含糊流卡图纸为什么会产生表面缺陷材料 人员工艺方法 设备抢进度管理奖罚不明研磨速度研磨余量研磨压强图 4.6 影响表面质量的因素分析4.2.3 工序能力指数计算工序能力指数是表示工序能力对产品设计质量要求的保证度,质量技术要求一般

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论