




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 高中数学常用逻辑用语高中数学常用逻辑用语 目标认知目标认知 考试大纲要求 考试大纲要求 1 理解命题的概念 了解逻辑联结词 或 且 非 的含义 2 了解命题 若 p 则 q 的形式及其逆命题 否命题与逆否命题 分析四种命题相互关系 3 理解必要条件 充分条件与充要条件的意义 4 理解全称量词与存在量词的意义 能正确地对含有一个量词的命题进行否定 重点 重点 充分条件与必要条件的判定 难点 难点 根据命题关系或充分 或必要 条件进行逻辑推理 知识要点梳理知识要点梳理 知识点一 命题知识点一 命题 1 1 定义 定义 一般地 我们把用语言 符号或式子表达的 可以判断真假的语句叫做命题 1 命题由题设和结论两部分构成 命题通常用小写英文字母表示 如 p q r m n 等 2 命题有真假之分 正确的命题叫做真命题 错误的命题叫做假命题 数学中的定义 公理 定理等都是 真命题 3 命题 的真假判定方式 若要判断命题 是一个真命题 需要严格的逻辑推理 有时在推导时加上语气词 一定 能帮助 判断 如 一定推出 若要判断命题 是一个假命题 只需要找到一个反例即可 注意 注意 不一定等于 3 不能判定真假 它不是命题 2 2 逻辑联结词 逻辑联结词 或 且 非 这些词叫做逻辑联结词 1 不含逻辑联结词的命题叫简单命题 由简单命题与逻辑联结词构成的命题叫复合命题 2 复合命题的构成形式 p 或 q p 且 q 非 p 即命题 p 的否定 2 3 复合命题的真假判断 利用真值表 非 真真假真真 真假假真假 假真真真假 假假真假假 当 p q 同时为假时 p 或 q 为假 其它情况时为真 可简称为 一真必真 当 p q 同时为真时 p 且 q 为真 其它情况时为假 可简称为 一假必假 非 p 与 p 的真假相反 注意 注意 1 逻辑连结词 或 的理解是难点 或 有三层含义 以 p 或 q 为例 一是 p 成立 且 q 不成立 二是 p 不成立但 q 成立 三是 p 成立且 q 也成立 可以类比于集合中 或 2 或 且 联结的命题的否定形式 p 或 q 的否定是 p 且q p 且 q 的否定是 p 或q 3 对命题的否定只是否定命题的结论 否命题 既否定题设 又否定结论 知识点二 四种命题知识点二 四种命题 1 1 四种命题的形式 四种命题的形式 用 p 和 q 分别表示原命题的条件和结论 用p 和q 分别表示 p 和 q 的否定 则四种命题的形式为 原命题 若 p 则 q 逆命题 若 q 则 p 否命题 若p 则q 逆否命题 若q 则p 2 2 四种命题的关系四种命题的关系 原命题逆否命题 它们具有相同的真假性 是命题转化的依据和途径之一 逆命题否命题 它们之间互为逆否关系 具有相同的真假性 是命题转化的另一依据和途径 除 之外 四种命题中其它两个命题的真伪无必然联系 命题与集合之间可以建立对应关系 在这样的对应下 逻辑联结词和集合的运算具有一致性 命 题的 且 或 非 恰好分别对应集合的 交 并 补 因此 我们就可以从集合的 角度进一步认识有关这些逻辑联结词的规定 3 知识点三 充分条件与必要条件知识点三 充分条件与必要条件 1 1 定义 定义 对于 若 p 则 q 形式的命题 从逻辑观点上 关于充分不必要条件 必要不充分条件 充分必要条件 既不充分也不必要条件的判定在 于区分命题的条件p与结论q之间的关系 若 pq 则 p 是 q 的充分条件 q 是 p 的必要条件 若 pq 但 qp 则 p 是 q 的充分不必要条件 q 是 p 的必要不充分条件 若qp 且p q 则p是q成立的必要不充分条件 若既有 pq 又有 qp 记作 pq 则 p 是 q 的充分必要条件 充要条件 若p q且q p 则p是q成立的既不充分也不必要条件 从集合的观点上 关于充分不必要条件 必要不充分条件 充分必要条件 既不充分也不必要条件的判定 在于判断p q相应的集合关系 建立与p q相应的集合 即 p Ax p x 成立 q Bx q x 成立 若AB 则p是q的充分条件 若AB 则p是q成立的充分不必要条件 若BA 则p是q的必要条件 若BA 则p是q成立的必要不充分条件 若AB 则p是q成立的充要条件 若 A B 且 B A 则p是q成立的既不充分也不必要条件 2 2 理解认知 理解认知 1 在判断充分条件与必要条件时 首先要分清哪是条件 哪是结论 然后用条件推结论 再用结论 推条件 最后进行判断 2 充要条件即等价条件 也是完成命题转化的理论依据 当且仅当 有且仅有 必须且只须 等价于 反过来也成立 等均为充要条件的同义词语 3 3 判断命题充要条件的三种方法判断命题充要条件的三种方法 1 定义法 2 等价法 由于原命题与它的逆否命题等价 否命题与逆命题等价 因此 如果原 命题与逆命题真假不好判断时 还可以转化为逆否命题与否命题来判断 即利用 与 与 与的等价关系 对于 条件或结论是不等关系 或否定式 的命题 一般运用等价法 3 利用集合间的包含关系判断 比如 AB 可判断为 AB A B 可判断为 AB 且 BA 即 AB 如图 且 是的充分不必要条件 4 是的充分必要条件 知识点四 全称量词与存在量词知识点四 全称量词与存在量词 1 1 全称量词与存在量词全称量词与存在量词 全称量词及表示 表示全体的量词称为全称量词 表示形式为 所有 任意 每一个 等 通常用符 号 表示 读作 对任意 含有全称量词的命题 叫做全称命题 全称命题 对 M 中任意一个 x 有 p x 成立 可表示为 其中 M 为给定的集合 p x 是关于 x 的命题 II 存在量词及表示 表示部分的量称为存在量词 表示形式为 有一个 存在一个 至少有一个 有点 有些 等 通常用符号 表示 读作 存在 含有 存在量词的命题 叫做特称命题 特称命题 存在 M 中的一个 x 使 p x 成立 可表示 为 其中 M 为给定的集合 p x 是关于 x 的命题 2 2 对含有一个量词的命题进行否定对含有一个量词的命题进行否定 I 对含有一个量词的全称命题的否定 全称命题 p 他的否定 全称命题的否定是特称命题 II 对含有一个量词的特称命题的否定 特称命题 p 他的否定 特称命题的否定是全称命题 注意 注意 1 命题的否定与命题的否命题是不同的 命题的否定只对命题的结论进行否定 否定一 次 而命题的否命题则需要对命题的条件和结论同时进行否定 否定二次 2 一些常见的词的否定 正面词等于大于小于是都是一定是至少一个至多一个 否定词不等于不大于不小于不是不都是一定不是一个也没有至少两个 规律方法指导规律方法指导 1 解答命题及其真假判断问题时 首先要理解命题及相关概念 特别是互为逆否命题的真 假性一致 2 要注意区分命题的否定与否命题 3 要注意逻辑联结词 或 且 非 与集合中的 并 交 补 是相关的 将二 5 者相互对照可加深认识和理解 4 处理充要条件问题时 首先必须分清条件和结论 对于充要条件的证明 必须证明充分 性 又要证明必要性 判断充要条件一般有三种方法 用集合的观点 用定义和利用命 题的等价性 求充要条件的思路是 先求必要条件 再证明这个必要条件是充分条件 5 特别重视数形结合思想与分类讨论思想的运用 总结升华 总结升华 1 判断复合命题的真假的步骤 确定复合命题的构成形式 判断其中简单命题 p 和 q 的真假 根据规定 或真假表 判断复合命题的真假 2 条件 或 是 或 的关系 否定时要注意 类型二 四种命题及其关系类型二 四种命题及其关系 2 写出命题 已知是实数 若 ab 0 则 a 0 或 b 0 的逆命题 否命题 逆否命题 并判断其 真假 解析 解析 逆命题 已知是实数 若 a 0 或 b 0 则 ab 0 真命题 否命题 已知是实数 若 ab 0 则 a 0 且 b 0 真命题 逆否命题 已知是实数 若 a 0 且 b 0 则 ab 0 真命题 总结升华 总结升华 1 已知是实数 为命题的大前提 写命题时不应该忽略 2 互为逆否命题的两个命题同真假 3 注意区分命题的否定和否命题 类型三 全称命题与特称命题真假的判断类型三 全称命题与特称命题真假的判断 总结升华 总结升华 1 要判断一个全称命题是真命题 必须对限定的集合 M 中每一个元素 验证成立 要判断全称命题是假命题 只要能举出集合 M 中的一个 使不成立可 2 要判断一个特称命题的真假 依据 只要在限定集合 M 中 至少能找到一个 使 成立 则这个特称命题就是真命题 否则就是假命题 类型四 充要条件的判断类型四 充要条件的判断 总结升华 总结升华 6 1 处理充分 必要条件问题时 首先要分清条件与结论 2 正确使用判定充要条件的三种方法 要重视等价关系转换 特别是与关系 类型五 求参数的取值范围类型五 求参数的取值范围 总结升华 总结升华 由 p 或 q 为真 知 p q 必有其一为真 由 p 且 q 为假 知 p q 必有一个为假 所以 p 假且 q 真 或 p 真且 q 假 可先求出命题 p 及命题 q 为真的条件 再分类讨论 总结升华 总结升华 从认知已知条件切入 将四种命题或充要条件问题向集合问题转化 是解决这类问题的基本策略 类型六 证明类型六 证明 总结升华 总结升华 1 利用反证法证明时 首先正确地作出反设 否定结论 从这个假设出发 经过推理论证 得出矛盾 从而假设不正确 原命题成立 反证法一般适宜结论本身以否定形式出现 或以 至多 至少 形式出现 或关于唯一性 存在性问题 或者结论的反面是 比原命题更具体更容易研究的命题 2 反证法时对结论进行的否定要正确 注意区别命题的否定与否命题 总结升华 总结升华 1 对于充要条件的证明 既要证明充分性 又要证明必要性 所以必须分清条件是什 么 结论是什么 2 充分性 由条件结论 必要性 由结论条件 3 叙述方式的变化 比如是的充分不必要条件 等价于 的充分不必要要条件是 三 典型例题选讲三 典型例题选讲 例例 1 1 写出下列命题的逆命题 否命题 逆否命题 并判断它们的真假 1 已知a b c为实数 若0ac 则 2 0axbxc 有两个不相等的实数根 2 两条平行线不相交 3 若 22 0 xy 则x y全为零 分析 分析 写出一个命题的四种命题形式 关键是分清命题的条件与结论 把命题写成 如果 那么 的形 式 再根据四种命题的定义写出其他三种命题即可 解 解 1 原命题是真命题 逆命题 若 2 0axbxc 有两个不相等的实数根 则0ac 假 否命题 若0ac 则 2 0axbxc 没有两个不相等的实数根 假 逆否命题 若 2 0axbxc 没有两个不相等的实数根 则0ac 真 2 原命题形式可写成 若两条直线平行 则它们不相交 真 逆命题 若两条直线不相交 则它们平行 假 否命题 若两条直线不平行 则它们相交 假 逆否命题 若两条直线相交 则它们不平行 真 3 原命题是真命题 逆命题 若x y全为零 则 22 0 xy 真 7 否命题 若 22 0 xy 则x y不全为零 真 逆否命题 若x y不全为零 则 22 0 xy 真 归纳小结 归纳小结 1 本题考查了命题的四种形式 并能进行真假判断 强化对知识运用的灵活性 2 要注意四种命题之间的等价关系 即原命题与逆否命题等价 否命题与逆命题等价 在判断一个命题 是真命题时 要严格按照数学逻辑进行推理证明 而要说明它是假命题时 只需要举出一个反例即可 3 在否定条件或结论时 要注意否定词语的使用 常见否定词语有 正面词语等于大于小于是都是至多有一个 否定词语不等于不大于不小于不是不都是至少有两个 例例 2 2 说明下列命题形式 指出构成它们的简单命题 矩形的对角线垂直平分 不等式 2 20 xx 的解集是 2x x 或 1x 43 方程没有实数根 分析 分析 根据命题中出现的逻辑联结词或隐含的逻辑联结词 进行命题结构的判断 其中解题的关键是正确 理解逻辑联结词 且 或 非 的含义 解 解 这个命题是 pq 的形式 其中p 矩形的对角线互相垂直 q 矩形的对角线互相平分 这个命题是 pq 的形式 其中p 不等式 2 20 xx 的解集是 2x x q 不等式 2 20 xx 的解集是或 1x x 这个命题是 pq 的形式 其中p 43 q 43 这个命题是 p 的形式 其中p 方程有实数根 归纳小结 归纳小结 本题考查了含有逻辑联结词的命题结构 要求能正确理解逻辑联结词 并找出隐含的逻辑联 结词 能根据命题形式分析问题 解决问题 把简单命题合成为复合命题或把复合命题分解为两个简单命题并判断其真假是本节的重点之一 关键在 于理解逻辑联结词的含义 熟悉真值表可以加快对含有逻辑联结词的命题的真假判断 逻辑联结词中的 或 且 非 与日常用语中的 或 且 非 的意义是不完全相同的 如逻 辑词中的 或 含有可以兼有之意 而生活中的 或 一般不可兼有的意思 例例 3 3 2008 广东 已知命题p 所有有理数都是实数 命题q 正数的对数都是负数 则下列命题中为真 命题的是 A pq B pq C pq D pq 分析 分析 本题只需要判断出命题p和命题q的真假 根据真值表进行判断即可 解 解 由题意可以判断命题p是真命题 命题q是假命题 所以命题p 是假命题 命题q 是真命题 只 有 pq 是真命题 故选 D 归纳小结 归纳小结 1 本题考查了命题的真假判断和真值表的使用 考查了逻辑判断的思辩能力和推理能力 正面词语至少有一个任意的所有的一定 否定词语一个也没有某个某些一定不 8 2 命题pq 的真假判断是 一真就真 全假为假 命题pq 的真假判断是 一假就假 全真为真 命题p与p 的真假相反 例例 4 4 2009年北京 2 6 kkZ 是 1 cos2 2 的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 分析 分析 简易逻辑中充要条件的判断前提是先明确条件与结论 即弄清楚哪个是条件 哪个是结论 再根据 条件分析出推式的关系 从而利用定义和推式得到结论 解 解 当2 6 kkZ 时 1 cos2cos 4cos 332 k w 即pq 反之 当 1 cos2 2 时 有 22 36 kkkZ 或 22 36 kkkZ 即q p 综上所述 2 6 kkZ 是 1 cos2 2 的充分不必要条件 故选 A 例例 5 5 2008 福建 设集合0 1 x Ax x 03Bxx 那么 mA 是 mB 的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 分析 分析 本题条件与结论的形式都是集合形式 只要理清集合之间的关系 按照充要条件与集合的对应关系 即可作出判断 解 解 01Axx AB 故选 A 归纳小结 归纳小结 1 本题考查了充要条件的定义 这是高考试题题型的常见形式之一 可与其他考查内容综 合 同时还考查了数学转化思想 合情推理能力 2 充分不必要条件 必要不充分条件 充分必要条件 既不充分也不必要条件反映了条件p和结论 q之间的因果关系 在结合具体问题进行判断时 要注意以下几点 确定问题的条件和结论 尝试从条件 推结论 结论推条件 确定条件是结论的什么条件 也可以从命题体现的集合运算关系 判断出命题间的条 件 在从条件推结论 结论推条件时 可以利用学过的定理 定义和公式直接做逻辑判断 或利用数轴或 Venn 图分析两个集合的关系判断出 pq 和 qp 的真假 例例 6 6 2007 湖北 已知p是r的充分条件而不是必要条件 q是r的充分条件 s是r的必要条件 q是 s的必要条件 现有下列命题 s是q的充要条件 p是q的充分条件而不是必要条件 r是q的必要 条件而不是充分条件 sp 是的必要条件而不是充分条件 r是s的充分条件而不是必要条件 则正确 命题序号是 A B C D 分析 分析 本题命题及其关系较多 如果直接解决则比较麻烦 可以用符号 等符号表示 简化 题意 解决方便 解 解 由题意可知 pr 且r p qrsq 9 所以sq 正确 prq 且q p 正确 rq 不正确 prs 且s p 正确 rs 不正确 故选 B 归纳小结 归纳小结 1 本题考查了充分条件 必要条件 充要条件的概念及命题之间关系的转化 逆否命题的 等价性 考查了逻辑思辩能力和转化思想 2 在命题之间的充分条件 必要条件 充要条件的推导过程中 使用符号语言可以简化过程 降低思 维量 例例 7 7 已知命题p 1 12 3 x 命题q 22 2100 xxmm 若 p是 q的充分不必要 条件 求实数m的取值范围 分析 分析 p是 q的充分不必要条件转化为等价命题形式 q是p的充分不必要条件 利用等价命题先 进行命题的等价转化 搞清晰命题中条件与结论的关系 再去解不等式 找解集间的包含关系 从而求出 m的取值范围 解 解 记 1 12210 3 x Axxx 22 2100110Bx xxmmxmxm m p是 q的充分不必要条件 q是p的充分不必要条件 即BA 0 12 110 m m m 解得03m 所以实数m的取值范围是03m 归纳小结 归纳小结 1 本题以含绝对值的不等式及一元二次不等式的解法为考查对象 同时考查了充分必要条件 及四种命题中等价命题的应用 考查了转化思想的运用 强调了知识点运用的灵活性 2 对四种命题以及充要条件的定义实质理解不清晰是解此题的难点 在判断或利用两个命题的充要条件 时 可以利用它们的等价式 即将命题转化为另一个等价形式的命题 一般可以利用逆否命题的等价形式 若 p q 即qp 则p是q的必要条件 q是p的充分条件 若 p q 且 q p 即qp 且p q 则p是q的必要不充分条件 若 q p 且 p q 即pq 且q p 则p是q的充分不必要条件 若 p q 则pq 即p q互为充要条件 若 p q 且 q p 即q p 且p q 则p是q的既不充分也不必要条件 例例 8 8 2009年海南 宁夏 有四个关于三角函数的命题 1 p xR 22 1 sincos 222 xx 2 p x yR sinsinsinxyxy 10 3 p 0 x 1 cos2 sin 2 x x 4 p sincos 2 xyxy 其中是假命题的有 A 1 p 4 p B 2 p 4 p C 1 p 3 p D 2 p 4 p 分析 分析 若全称命题为真命题 必须对限定范围内的元素中的全体都成立 若特称命题是真命题 只需在限 定范围中有一个元素满足条件即可 解 解 1 p是假命题 因为xR 22 sincos1 22 xx 2 p是真命题 如0 xy 时成立 3 p是真命题 0 x sin0 x 2 1 cos2 sinsinsin 2 x xxx 4 p是假命题 如 2 x 2y 时 sincosxy 但 2 xy 故选 A 归纳小结 归纳小结 1 本题考查了全称命题与特称命题的真假判断 同时也考查了对概念的转化能力和推理能 力 2 一般地说 全称命题与特称命题的真假判断方法是 判定一个全称命题是真命题时 必须对限定的集合M中的每一个元素x 验证 p x成立即可 判定一个全称命题是假命题时 只要能列举出集合M中的一个元素 0 x 使 0 p x不成立即可 判定一个特称命题是真命题时 只要在限定的集合M中 至少能找到一个元素 0 x 使 0 p x成立即可 否则 这个特称命题就是假命题 例例 9 9 2007 宁夏 已知命题p 1sin xRx 则 A 1sin xRxp B 1sin xRxp C 1sin xRxp D 1sin xRxp 分析 分析 对全称 特称 命题的否定是将其全称 存在 量词改为存在 全称 量词 再将结论否定 解 解 将 变为 同时否定sin1x 可以得到1sin xRxp 故选 C 归纳小结 归纳小结 1 本题考查了含有一个量词的命题的否定及否定词的运用 对学生的逻辑判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瑞达法考课件上传时间
- 瑞辉网络安全培训课件
- 开发认养农业合作协议书4篇
- 瑞丽风情教学课件
- 安全施培训心得课件
- 福州大型清洗工程方案(3篇)
- 农业碳汇开发模式创新与2025年市场潜力预测报告
- 电网工程绿色策划方案(3篇)
- 安全文明施工培训课件
- 纺织旧厂改造工程方案(3篇)
- 2025至2030中国挠性覆铜板FCCL行业市场发展分析及应用领域与发展前景报告
- 【苏州】2024年江苏苏州昆山市人民检察院下属事业单位招聘编外工作人员7人笔试附带答案详解
- 2025年《数字孪生与虚拟调试技术应用》课程标准
- 医院价格公示管理制度
- 建设工程设计合同(业主、管理人、设计人三方)
- 计算机一级Msoffice知识点总结试题及答案
- 新生儿竞赛试题及答案
- TCCEAS001-2022建设项目工程总承包计价规范
- 输变电工程施工质量验收统一表式附件4:电缆工程填写示例
- 幼儿园大班数学测加减法口算练习题
- 餐饮内部稽核管理制度
评论
0/150
提交评论