




免费预览已结束,剩余42页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
光学教程光学教程 姚启钧 习题解答 姚启钧 习题解答 第一章第一章 光的干涉光的干涉 1 波长为的绿光投射在间距为的双缝上 在距离处的光屏500nmd0 022cm180cm 上形成干涉条纹 求两个亮条纹之间的距离 若改用波长为的红光投射到此700nm 双缝上 两个亮纹之间的距离为多少 算出这两种光第 2 级亮纹位置的距离 解 1 500nm 7 0 11 180 500 100 409 0 022 r ycm d 改用 2 700nm 7 0 22 180 700 100 573 0 022 r ycm d 两种光第二级亮纹位置的距离为 21 220 328yyycm 2 在杨氏实验装置中 光源波长为 两狭缝间距为 光屏离狭缝的640nm0 4mm 距离为 试求 光屏上第 1 亮条纹和中央亮纹之间的距离 若 P 点离中50cm 央亮纹为问两束光在 P 点的相位差是多少 求 P 点的光强度和中央点的强0 1mm 度之比 解 7 0 50 640 100 08 0 04 r ycm d 由光程差公式 21 0 sin y rrdd r 0 22 4 y d r 中央点强度 2 0 4IA P 点光强为 2 21 cos 4 IA 0 12 2 1 0 854 2 I I 3 把折射率为的玻璃片插入杨氏实验的一束光路中 光屏上原来第 5 级亮条纹1 5 所在的位置变为中央亮条纹 试求插入的玻璃片的厚度 已知光波长为 7 6 10 m 解 设玻璃片的厚度为1 5n d 由玻璃片引起的附加光程差为 1nd 15nd 764 55 6 106 106 10 10 5 dmcm n 4 波长为的单色平行光射在间距为的双缝上 通过其中一个缝的能500nm0 2mm 量为另一个的倍 在离狭缝的光屏上形成干涉图样 求干涉条纹间距和条纹250cm 的可见度 解 7 0 50 500 100 125 0 02 r ycm d 由干涉条纹可见度定义 1 2 min 2 min 1 2 2 1 Max Max A AII V II A A 由题意 设 即代入上式得 22 12 2AA 1 2 2 A A 2 2 0 94 3 V 5 波长为的光源与菲涅耳双镜的相交棱之间距离为 棱到光屏间的距700nm20cm 离为 若所得干涉条纹中相邻亮条纹的间隔为 求双镜平面之间的夹L180cm1mm 角 解 700 20 180 1nm rcm Lcmymm 由菲涅耳双镜干涉条纹间距公式 7 2 sin 20 180 sin700 100 0035 22 20 0 1 rL y r rL r y 180 sin0 00356012 3 14 6 在题 1 6 图所示的劳埃德镜实验中 光源 S 到观察屏的距离为 到劳埃德1 5m 镜面的垂直距离为 劳埃德镜长 置于光源和屏之间的中央 若光波2mm40cm 波长 问条纹间距是多少 确定屏上可以看见条纹的区域大小 此区500nm 域内共有几条条纹 提示 产生干涉的区域 P1P2可由图中的几何关系求得 解 由图示可知 7 0 500500 10 40 4 1 5150nmcm dmmcm rmcm 7 0 150 500 100 018750 19 0 4 r ycmmm d 在观察屏上可以看见条纹的区域为 P1P2间 01 0 750 2 21 16 0 750 2 P Pmm 02 0 750 2 23 45 0 750 2 P Pmm 即 离屏中央上方的范围内可看见条纹 21 3 45 1 162 29P Pmm 1 16mm2 29mm 21 2 29 12 0 19 P P N y 0 4m 2mm 1 5m S S P2 P1 P0 题 1 6 图 7 试求能产生红光 的二级反射干涉条纹的肥皂膜厚度 已知肥皂膜700nm 折射率为 且平行光与法向成 300角入射 1 33 解 2 700 1 33nm n 由等倾干涉的光程差公式 222 211 2sin 2 dnni 222 211 2sin2 2 dnni 22 2 3 426 4sin 30o dnm n 8 透镜表面通常镀一层如 MgF2 一类的透明物质薄膜 目的是利用干涉1 38n 来降低玻璃表面的反射 为了使透镜在可见光谱的中心波长 处产生极小550nm 的反射 则镀层必须有多厚 解 1 38n 物质薄膜厚度使膜上下表面反射光产生干涉相消 光在介质上下 表面反射时均存在半波损失 由光程差公式 1 2 2 nh 5 550 99 61 10 44 1 38 hnmcm n 9 在两块玻璃片之间一边放一条厚纸 另一边相互压紧 玻璃片 长 纸厚l10cm 为 从 600的反射角进行观察 问在玻璃片单位长度内看到的干涉条纹数目0 05mm 是多少 设单色光源波长为500nm 解 0 2cos60 2 o n h 相邻亮条纹的高度差为 6 0 500 500 10 1 2cos60 2 1 2 o hnmmm n H 0 05mm 可看见总条纹数 6 0 05 100 500 10 H N h 则在玻璃片单位长度内看到的干涉条纹数目为 100 10 10 N n l 即每内 10 条 cm 10 在上题装置中 沿垂直于玻璃表面的方向看去 看到相邻两条暗纹间距为 已知玻璃片长 纸厚 求光波的波长 1 4mm17 9cm0 036mm 解 当光垂直入射时 等厚干涉的光程差公式 2 2 nh 可得 相邻亮纹所对应的厚度差 2 h n 由几何关系 即 hH ll l hH l 4 0 14 222 10 00360 5631 10563 1 17 9 l n hnHcmnm l 11 波长为的可见光正射在一块厚度为 折射率为的薄400760nm 6 1 2 10 m 1 5 玻璃片上 试问从玻璃片反射的光中哪些波长的光最强 解 6 1 2 10 1 5hm n 由光正入射的等倾干涉光程差公式 2 2 nh 使反射光最强的光波满 足2 2 nhj 41 7200 2121 nh nm jj 5 654 5jnm H l 6 553 8jnm 7 480 0jnm 8 423 5jnm 12 迈克耳逊干涉仪的反射镜 M2移动时 看到条纹移过的数目为个 0 25mm909 设光为垂直入射 求所用光源的波长 解 光垂直入射情况下的等厚干涉的光程差公式 22nhh 移动一级厚度的改变量为 2 h 6 0 25 10 909 2 nm 6 0 25 102 550 0 909 nm 13 迈克耳逊干涉仪的平面镜的面积为 观察到该镜上有个条纹 当入 2 4 4cm 20 射光的波长为时 两镜面之间的夹角为多少 589nm 解 由光垂直入射情况下的等厚干涉的光程差公式 22nhh 相邻级亮条纹的高度差 2 h 由和构成的空气尖劈的两边高度差为 1 M 2 M 2010Hh 7 10 589 10 0 0001472530 39 44 H rad M1 M2 1 M 2 M 14 调节一台迈克耳逊干涉仪 使其用波长为的扩展光源照明时会出现同心500nm 圆环条纹 若要使圆环中心处相继出现条圆环条纹 则必须将移动一臂多远的1000 距离 若中心是亮的 试计算第一暗环的角半径 提示 圆环是等倾干涉图样 计算第一暗环角半径时可利用的关系 2 1 sin cos1 2 解 500nm 出现同心圆环条纹 即干涉为等倾干涉 对中心 2h 72 21000 1 1000 500 102 5 100 25 2 h hcmmm 15 用单色光观察牛顿环 测得某一亮环的直径为 在它外边第 5 个亮环的直3mm 径为 所用平凸透镜的凸面曲率半径为 求此单色光的波长 4 6mm1 03m 解 由牛顿环的亮环的半径公式 21 2 rjR 2 2 1 3 21 22 jRr 2 2 2 4 6 2 5 1 22 jRr 以上两式相减得 12 16 5 4 R 3 3 12 16 0 5903 10590 3 4 5 1 03 10 mmnm 16 在反射光中观察某单色光所形成的牛顿环 其第 2 级亮环与第 3 级亮环间距为 求第 19 和 20 级亮环之间的距离 1mm 解 牛顿环的反射光中所见亮环的半径为 21 2 rjR 即 2 5 2 rR 3 7 2 rR 19 39 2 rR 20 41 2 rR 则 201932 41390 16 41390 4 20 475 rrrRrrmm 第第 2 章章 光的衍射光的衍射 1 单色平面光照射到一小圆孔上 将其波面分成半波带 求第个带的半径 若极k 点到观察点的距离为 单色光波长为 求此时第一半波带的半径 0 r1m450nm 解 由公式 2 0 11 H R k rR 对平面平行光照射时 波面为平面 即 R 2 0H Rkr 263 0 1 450 101 100 45 H Rkr 0 45 H Rmm 2 平行单色光从左向右垂直射到一个有圆形小孔的屏上 设此孔可以像照相机光 圈那样改变大小 问 小孔半径应满足什么条件时 才能使得此小孔右侧轴线上 距小孔中心的 P 点的光强分别得到极大值和极小值 P 点最亮时 小孔直径应4m 为多大 设此光的波长为 500nm 解 0 4400rmcm 7 0 500 104000 141 H Rk rkkcm 当为奇数时 P 点为极大值k 当 C 数时 P 点为极小值 由 为奇 取 为偶 取 1 1 2 Pk Aaa kk P 0 r 0 2 rk 当 即仅露出一个半波带时 P 点最亮 1k 1 0 141 1 H Rcm k 0 282Dcm 3 波长为的单色点光源离光阑 光阑上有一个内外半径分别为和500nm1m0 5mm 的透光圆环 接收点 P 离光阑 求 P 点的光强与没有光阑时的光强之比 1mm1mI 0 I 解 1 2 3 2 1 1 9 0 0 5 0 5 10 1111 1 500 1011 H H Rmm R k rR 2 2 3 2 2 2 9 0 1 1 10 1111 4 500 1011 H H Rmm R k rR 即从透光圆环所透过的半波带为 2 3 4 设 1234 aaaaa 234P Aaaaa 没有光阑时 1 1 1 2 0 11 22 Pk k P Aaa ka Aaa 光强之比 2 2 0 4 1 1 2 Ia I a P 0 1rm S 1Rm 4 波长为的平行光射向直径为的圆孔 与孔相距处放一屏 试632 8nm2 76mm1m 问 屏上正对圆孔中心的 P 点是亮点还是暗点 要使 P 点变成与 相反的情况 至少要把屏分别向前或向后移动多少 解 由公式 2 0 11 H R k rR 对平面平行光照射时 波面为平面 即 R 2 2 9 0 2 76 2 3 632 8 101 H R k r 即 P 点为亮点 则 注 取作单位 0 11 3k rR 0 r Rm 0 1 3k r 向右移 使得 2k 0 3 1 5 1 5 10 5 2 rmrm 向左移 使得 4k 0 3 0 75 1 0 750 25 4 rmrm 5 一波带片由五个半波带组成 第一半波带为半径的不透明圆盘 第二半波带是 1 r 半径和的透明圆环 第三半波带是至的不透明圆环 第四半波带是至 1 r 2 r 2 r 3 r 3 r 的透明圆环 第五半波带是至无穷大的不透明区域 已知 4 r 4 r 0 r P 用波长的平行单色光照明 最亮的像点在距波 1234 1 2 3 4r rrr 500nm 带片的轴上 试求 像点的光强 光强极大值出现在哪些位置上 1m 1 r 解 由 1234 1 2 3 4r rrr 波带片具有透镜成像的作用 2 Hk R f k 2 1 29 11 1 1 500 10 0 07 r m rrcm 2 24 2 4AaaaIa 无光阑时 2 2 0 11 24 Iaa 即 为入射光的强度 0 16II 0 I 由于波带片还有 等多个焦点存在 即光强极大值在轴上 11 35 ff 11 35 mm 6 波长为的点光源经波带片成一个像点 该波带片有个透明奇数半波带 100 1 3 5 199 另外个不透明偶数半波带 比较用波带片和换上同样焦距和100 口径的透镜时该像点的强度比 0 I I 解 由波带片成像时 像点的强度为 2 100Ia 由透镜成像时 像点的强度为 2 0 200Ia 即 0 1 4 I I 7 平面光的波长为 垂直照射到宽度为的狭缝上 会聚透镜的焦距480nm0 4mm 为 分别计算当缝的两边到 P 点的相位差为和时 P 点离焦点的距离 60cm 2 6 解 对沿方向的衍射光 缝的两边光的光程差为 sinb 相位差为 22 sinb 对使的 P 点 2 2 sin 2 b sin 4b 6 1 480 10 tansin6000 18 44 0 4 yfffmm b 对使的 P 点 6 2 sin 6 b sin 12b 6 1 480 10 tansin6000 06 1212 0 4 yfffmm b 8 白光形成的单缝衍射图样中 其中某一波长的第三个次最大值与波长为 的光波的第二个次最大值重合 求该光波的波长 600nm 解 对方位 的第二个次最大位 600nm 1 sin2 2b 对 的第三个次最大位 b P 1 sin3 2b 即 57 22bb 55 600428 6 77 nm 9 波长为的平行光垂直地射在宽的缝上 若将焦距为的透镜紧546 1nm1mm100cm 贴于缝的后面 并使光聚焦到屏上 问衍射图样的中央到 第一最小值 第一最 大值 第三最小值的距离分别为多少 解 第一最小值的方位角为 1 1 sin1b 6 111 546 1 10 tansin10000 55 1 yfffmm b 第一最大值的方位角为 1 1 1 sin1 2b 6 111 546 1 10 tansin1 431000 1 430 78 1 yfffmm b 第 3 最小值的方位角为 3 3 sin3 b 6 333 546 1 10 tansin31000 31 65 1 yfffmm b 10 钠光通过宽的狭缝后 投射到与缝相距的照相底片上 所得的第0 2mm300cm 一最小值与第二最小值间的距离为 问钠光的波长为多少 若改用 X 射线0 885cm 做此实验 问底片上这两个最小值之间的距离是多少 0 1nm 解 300Lcm 0 2bmm 单缝衍射花样最小值位置对应的方位满足 sin 1 2 3 kk b 则 11 sin1 b 22 sin2 b 21 xLL b 4 0 2 8 855 9 10590 3000 b xmmnm L 7 4 0 1 10 3001 5 10 0 02 xLcm b 11 以纵坐标表示强度 横坐标表示屏上的位置 粗略地画出三缝的夫琅禾费衍射 包括缝与缝之间的干涉 图样 设缝宽为 相邻缝间的距离为 注bd3db 意缺级问题 12 一束平行白光垂直入射在每毫米条刻痕的光栅上 问第一级光谱的末端和第50 二光谱的始端的衍射角之差为多少 设可见光中最短的紫光波长为 最 400nm 长的红光波长为 760nm 解 每毫米条刻痕的光栅 即50 1 0 02 50 dmmmm 第一级光谱的末端对应的衍射方位角为 1 末 1 11 sin1 sin d d 红末 红 末末 3 12 21 3 N N N d b 第二级光谱的始端对应的衍射方位角为 2 始 1 sin2 2 sin d d 2始紫 紫 2始2始 663 21 11 22 400 10760 102 10 0 02 rad d 红始末紫 13 用可见光 照射光栅时 一级光谱和二级光谱是否重叠 二级760400nm 和三级怎样 若重叠 则重叠范围是多少 解 光谱线对应的方位角 sink d 21 400760 21 dd 始末 即第一级光谱与第二级光谱无重叠 23 76015204001200 23 dddd 末始 即第二级光谱与第三级光谱有重叠 由 2 15201520 3 506 7 3 nm nm dd 末 即第三级光谱的的光谱与第二级光谱重叠 400506 7nm 14 用波长为的单色光照射一衍射光栅 其光谱的中央最大值和第二十级主589nm 最大值之间的衍射角为 求该光栅内的缝数是多少 0 15 10 1cm 解 第 20 级主最大值的衍射角由光栅方程决定 20 sin20d 2020 sin20 d 15 60 10 20 180 60 3 14 d 0j 1j 2j 3j 0 解得 2 0 45 10dcm 1 222 Ncm d 条 15 用每毫米内有条刻痕的平面透射光栅观察波长为的钠光谱 试问 400589nm 光垂直入射时 最多功能能观察到几级光谱 光以角入射时 最多能观察 0 30 到几级光谱 解 6 1 589 10 400 dmmmm 光垂直入射时 由光栅方程 sindj 6 111 sin4 244 589 10400 jd 即能看到 4 级光谱 光以角入射30o sinsin30odj 1 sinsin304 16 2 o d j 16 白光垂直照射到一个每毫米条刻痕的平面透射光栅上 试问在衍射角为250 处会出现哪些波长的光 其颜色如何 0 30 解 1 250 dmm 在的衍射角方向出现的光 应满足光栅方程 30osin30odj 11111 sin302000 2502 o dmmnm jjj 3 667jnm 4 500jnm 5 400jnm 17 用波长为的单色光照射一光栅 已知该光栅的缝宽为 不透624nmb0 012mm 明部分的宽度为 缝数为条 求 单缝衍射图样的中央角宽度 a0 029mmN 3 10 单缝衍射图样中央宽度内能看到多少级光谱 谱线的半宽度为多少 解 0 012 0 029bmmamm 0 041dabmm 1000N 6 0 624 10 220 104 0 012 rad b 级光谱对应的衍射角为 j 11 sin sin1 dj d 0 1 1 2 3 43 d k b 即在单缝图样中央宽度内能看到条 级 光谱 2 3 17 由多缝干涉最小值位置决定公式 sinj Nd 6 5 1 2 624 10 1 52 10 1000 0 041 rad Nd 第第 3 章章 几何光学的基本原理几何光学的基本原理 1 证明反射定律符合费马原理 证明 设 A 点坐标为 B 点坐标为 1 0 y 22 xy 入射点 C 的坐标为 0 x 光程 ACB 为 2 222 122 xyxxy 令 2 222 2 1 22 2121 sinsin0 22 xxdx ii dx xy xxy 即 sinsini i 2 根据费马原理可以导出近轴光线条件下 从物点发出并会聚到像点的所有光线 的光程都相等 由此导出薄透镜的物像公式 3 眼睛 E 和物体 PQ 之间有一块折射率为的玻璃平板 见题 3 3 图 平板的厚1 5 度为 求物体 PQ 的像 P Q 与物体 PQ 之间的距离为多少 d30cm 2 d 1 0 Ay 22 B xy i i 解 12 sinsinini 由图 12121 1 tantansinsin1sinBBdididiidi n 11 11 130 110 tansin1 5 BBBB CEdcm iin 4 玻璃棱镜的折射角 A 为 对某一波长的光其折射率为 计算 最小偏 0 60n1 6 向角 此时的入射角 能使光线从 A 角两侧透过棱镜的最小入射角 解 由 1212112211 iiiiiiiiiiA 当时偏向角为最小 即有 11 i i 22 1 30 2 o iiA 1 2iA 12 1 sinsin1 60 8 2 ini 1 53 08 o i 2 53 086046 16 ooo 1 53 08 o i d 2 d A B B C E D B C A 1 i 2 i 2 i 1 i 5 略 6 高的物体距凹面镜顶点 凹面镜的焦距是 求像的位置及高度 5cm12cm10cm 并作光路图 解 由球面成像公式 112 ssr 代入数值 112 1220s 得 60scm 由公式 0 yy ss ys ys 60 525 12 s yycm s 7 一个高的物体放在球面镜前处成高的虚像 求 此镜的曲率半径 5cm10cm1cm 此镜是凸面镜还是凹面镜 解 5 10ycm scm 虚像 1ycm 0s 由 ys ys 1 510 s 得 2scm 由公式 112 ssr 112 210r 为凸面镜 5rcm 8 某观察者通过一块薄玻璃板去看在凸面镜中他自己的像 他移动着玻璃板 使 得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起 若凸面镜的焦距为 眼睛距凸面镜顶点的距离为 问玻璃板距观察者眼睛的距离为多少 10cm40cm 解 由题意 凸面镜焦距为 即10cm 21 10r 112 ssr 111 4010 8 s scm 48PPcm 玻璃板距观察者眼睛的距离为 1 24 2 dPPcm 9 物体位于凹面镜轴线上焦点之外 在焦点与凹面镜之间放一个与轴线垂直的两 表面互相平行的玻璃板 其厚度为 折射率为 试证明 放入该玻璃板后使像 1 dn 移动的距离与把凹面镜向物体移动的一段距离的效果相同 1 1 dnn 证明 40cm P P d P P s 设物点不动 由成像公式P 112 ssr 2 rs s sr 由题 3 可知 11 1 10PPdd n 入射到镜面上的光线可视为从发出的 即加入玻璃板后的物距为 1 Psd 1 112 ssdr 1 2 r sd s sdr 反射光线经玻璃板后也要平移 所成像的像距为d 11 ssd 放入玻璃板后像移量为 11 22 r sdrs sssd sdrsr 凹面镜向物移动之后 物距为 dsd 0 0sd 2 112 ssdr 1 d 1 PP s p d 1 1 1dd n o o 2 2 r sd s sdr 相对点距离 2 s o 22 2 r sd ssdd sdr 22 22 r sdrs sssd sdrsr 10 欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处 问这 透明球体的折射率应为多少 解 1 2snsr 由球面折射成像公式 nnnn ssr 2 nnn rr 解得 2n 11 有一折射率为 半径为的玻璃球 物体在距球表面处 求 物1 54cm6cm 所成的像到球心之间的距离 像的横向放大率 解 由球面成像为 P 1 o P nnnn ssr n n P1 o 2 o P P 1 511 5 1 64s 36scm 由球面成像 P 2 o P 2 36844scm 2 11 51 1 5 444s 在的右侧 离球心的距离 2 11scm P 2 o11415cm 球面成像 1 o 利用 P194 11 1 1ys ysn ysn ys n 球面成像 2 o 22 2 12 1 ysn ys 12 12 2 3611 1 5 644 ss ss 12 一个折射率为 直径为的玻璃球内有两个小气泡 看上去一个恰好1 5320cm 在球心 另一个从最近的方向看去 好像在表面与球心连线的中点 求两气泡的实 际位置 解 设气泡经球面成像于球心 由球面折射成像公式 1 P 1 o nnnn ssr 1 11 531 1 53 1010s 12 P P 1 o 即气泡就在球心处 1 10scm 1 P 另一个气泡 2 P 2 11 531 1 53 510s 即气泡离球心 2 6 05scm 2 P106 053 95cm 13 直径为的球形鱼缸的中心处有一条小鱼 若玻璃缸壁的影响可忽略不计 求1m 缸外观察者所看到的小鱼的表观位置和横向放大率 解 由球面折射成像公式 nnnn ssr 11 331 1 33 5050s 解得 在原处50scm 501 33 1 33 501 sn s n 14 玻璃棒一端成半球形 其曲率半径为 将它水平地浸入折射率为的水2cm1 33 中 沿着棒的轴线离球面顶点处的水中有一物体 利用计算和作图法求像的位8cm 置及横向放大率 并作光路图 解 由球面折射成像公式 nnnn ssr 1 51 331 5 1 33 82s 18 5scm 18 51 33 2 05 81 5 sn s n 1 5on P 15 有两块玻璃薄透镜的两表面均各为凸球面及凹球面 其曲率半径为 一物10cm 点在主轴上距镜处 若物和镜均浸入水中 分别用作图法和计算法求像点的20cm 位置 设玻璃的折射率为 水的折射率为 1 51 33 解 由薄透镜的物像公式 2112 12 nnnnnn ssrr 对两表面均为凸球面的薄透镜 1 331 331 5 1 331 33 1 5 201010s 40 9scm 对两表面均为凹球面的薄透镜 1 331 331 5 1 331 33 1 5 201010s 13 2scm 16 一凸透镜在空气的焦距为 在水中时焦距为 问此透镜的折射率40cm136 8cm 为多少 水的折射率为 若将此透镜置于 CS2中 CS2的折射率为 其1 331 62 焦距又为多少 解 薄透镜的像方焦距 2 12 12 n f nnnn rr 12 nnn 12 nnn 时 12 nn 1 1 12 11 n f nn rr 在空气中 1 12 1 11 1 f n rr 在水中 2 12 1 33 11 1 33 f n rr 两式相比 1 2 1 3340 1 331136 8 nf fn 解得1 54n 12 1 62nn 1 1 12 1 11 n f nn rr 而 1 12 11 111 fn rr 则 1 62 401 54 1437 4 1 54 1 62 fcm 第第 4 章章 光学仪器的基本原理光学仪器的基本原理 1 眼睛的构造简单地可用一折射球面来表示 其曲率半径为 内部为折射5 55mm 率等于的液体 外部是空气 其折射率近似地等于 1 试计算眼球的两个焦距 4 3 用肉眼观察月球时月球对眼的张角为 问视网膜上月球的像有多大 0 1 解 由球面折射成像公式 nnnn ssr 令 4 3 5 552 22 4 1 3 n sfrcm nn 令 1 5 5516 7 4 1 3 n sfrcm nn 2 5 550 190 019 180 ymmcm 2 把人眼的晶状体看成距视网膜的一个简单透镜 有人能看清距离在到2cm100cm 间的物体 试问 此人看远点和近点时 眼睛透镜的焦距是多少 为看300cm 清远的物体 需配戴怎样的眼镜 25cm 解 对于远点 11 300 2scm scm 由透镜成像公式 111 111 ssf 1 1 111 2300 1 987 f fcm 对于近点 2 2 111 2100 1 961 f fcm 对于25cm y 1o 111 225 1 852 f fcm 由两光具组互相接触组合整体 0d 2 111 111 1 8521 961 fff f 近视度 1 1 0 030cm f 300o 3 一照相机对准远物时 底片距物镜 当镜头拉至最大长度时 底片与物镜18cm 相距 求目的物在镜前的最近距离 20cm 解 由题意 照相机对准远物时 底片距物镜 18cm 18fcm 由透镜成像公式 111 ssf 111 2018 180 s scm 4 两星所成的视角为 用望远镜物镜照相 所得两像点相距 问望远镜物 4 1mm 镜的焦距是多少 解 3 14 1 180 60 rad 3 14 441 180 60 859 585 95 ffmm fmmcm 5 一显微镜具有三个物镜和两个目镜 三个物镜的焦距分别为 和16mm4mm 两个目镜的放大本领分别为 和倍 设三个物镜造成的像都能落在像距1 9mm510 为处 问这显微镜的最大和最小的放大本领各为多少 160cm 解 由显微镜的放大本领公式 121 25lcml MM fff 目 其最大放大本领 1 160 10842 1 9 Max lmm MM fmm 目 其最小放大本领 min 1 160 550 16 lmm MM fmm 目 6 一显微镜物镜焦距为 目镜焦距为 两镜间距为 观察者看到0 5cm2cm22cm 的像在无穷远处 试求物体到物镜的距离和显微镜的放大本领 解 由透镜物像公式 111 ssf 111 200 5s 解得 0 51scm 显微镜的放大本领 1212 25252225 550 0 52 sl M ffff 7 略 8 已知望远镜物镜的边缘即为有效光阑 试计算并作图求入光瞳和出射光瞳的位 置 9 10 22cm 13 焦距为的薄透镜 放在发光强度为的点光源之前处 在透镜20cm15cd30cm 后面处放一屏 在屏上得到明亮的圆斑 求不计透镜中光的吸收时 圆斑的80cm 中心照度 解 111 3020s 60scm 为透镜的面积 2 30 S dIdI S 点的像点的发光强度为 P P I 2 2 30 4 60 S I d II S d 22 cos4 1500 0 2 II Elx R 14 一长为的线状物体放在一照相机镜头前处 在底片上形成的像长为5mm50cm 若底片后移 则像的弥散斑宽度为 试求照相机镜头的 F 数 1mm1cm1mm 解 由 ys ys 得 1 550 s 10scm 30cm80cm 1mm d 由透镜物像公式 111 ssf 111 1050f 50 6 f 由图可见 10 0 11 d 1dcm F 数 50 8 33 6 f d 15 某种玻璃在靠近钠光的黄色双谱线 其波长分别为和 附近的589nm589 6nm 色散率为 求由此种玻璃制成的能分辨钠光双谱线的三棱镜 底边 dn d 1 360cm 宽度应小于多少 解 由色分辨本领 dn P d 589 3nm 0 6nm 360 dn d 2 7cm dn d 16 设计一块光栅 要求 使波长的第二级谱线的衍射角小于 并能分600nm 0 30 辨其的波长差 色散尽可能大 第三级谱线缺级 求出其缝宽 缝数 0 02nm 光栅常数和总宽度 用这块光栅总共能看到的几条谱线 600nm 解 由sindj 3 2 600 24002 4 10 sin30o nm dnmmm 由第三级缺级 3 1 3 0 8 10 3 d bdmm b 由 PjN 600 2 0 02 15000 N N 光栅的总宽度 3 15000 2 4 1036LNdmm 由 sin902400 4 600 o d j 能看到 共 5 条谱线0 1 2 17 若要求显微镜能分辨相距的两点 用波长为的可见光照明 0 000375mm550nm 试求 此显微镜物镜的数值孔径 若要求此两点放大后的视角为 则显微镜 2 的放大本领是多少 解 由显微镜物镜的分辨极限定义 0 610 sin y nu 6 550 10 sin06100 895 0 000375 nu 3 14 180 60 387 7 0 000375 250 M 18 夜间自远处驶来汽车的两前灯相距 如将眼睛的瞳孔看成产生衍射的圆孔 1 5m 试估计视力正常的人在多远处才能分辨出光源是两个灯 设眼睛瞳孔的直径为 3mm 设光源发出的光的波长为 550nm 解 1 5 U L 当才能分辨出0 610U R 1 5 0 610 LR 6 1 5550 10 0 610 1 5 mmm Lmmm 67066 7Lmkm 19 用孔径分别为和的两种望远镜能否分辨清月球上直径为的环20cm160cm500m 形山 月球与地面的距离为地球半径的倍 面地球半径约为 设光源606370km 发出的光的波长为 550nm 解 6 3 500 1 3 10 60 6370 10 Urad 孔径望远镜 20cm 6 6 1 550 10 1 221 223 355 10 200 rad D 孔径望远镜 160cm 6 6 1 550 10 1 221 220 419 10 1600 rad D 即用孔径望远镜不能分辨清 1 U 20cm 即用孔径望远镜能分辨清 1 U 160cm 20 电子显微镜的孔径角 电子束的波长为 试求它的最小分辨距离 0 28u 0 1nm 若人眼能分辨在明视距离处相距的两点 则此显微镜的放大倍数是多 2 6 7 10 mm 少 解 3 14 4 sinsin4 180 o nuuu 6 6 0 61 0 1 10 0 87 100 87 3 14 4 180 ymmnm 2 4 6 6 7 10 7 7 10 0 87 10 mm mm 第五章第五章 光的偏振光的偏振 1 试确定下面两列光波 10 coscos 2 xy EAetkzetkz 20 sinsin 2 xy EAetkzetkz 的偏振态 解 10 coscos 2 xy EAetkzetkz 10cosx EAtkz 100 cossin 2 y EAtkzAtkz 有 222 110 xy EEA 分析 0 0 0 0 0 2 x y x y EA tkzA E E tkzA EA 为 左旋 圆偏振光 20 sinsin 2 xy EAetkzetkz 20sinx EAtkz 200 sincos 2 y EAtkzAtkz 有 222 110 xy EEA 分析 0 00 0 02 x y x y E tkzA EA EA tkzA E 为 左旋 圆偏振光 2 为了比较两个被自然光照射的表面的亮度 对其中一个表面直接进行观察 另 一个表面通过两块偏振片来观察 两偏振片的透振方向的夹角为 若观察到两 0 60 表面的亮度相同 则两表面实际的亮度比是多少 已知光通过每一块偏振片后损失 入射光能量的 00 10 解 由于被光照射的表面的亮度与其反射的光的光强成正比 设直接观察的表面对应的光 强为 通过两偏振片观察的表面的光强为 1o I 2o I 通过第一块偏振片的光强为 12 1 0 9 2 o II 通过第二块偏振片的光强为 2 2122 11 0 9cos 600 90 90 1 24 oo IIII 由 122 0 1 oo III 则 1 2 0 1 o o I I 3 两个尼科耳 N1和 N2的夹角为 在它们之间放置另一个尼科耳 N3 让平行的 0 60 自然光通过这个系统 假设各尼科耳对非常光均无吸收 试问 N3和 N1的透振方向 的夹角为何值时 通过系统的光强最大 设入射光强为 求此时所能通过的最大 0 I 光强 解 0 I 1 I 3 I 2 I 1 N2 N 3 N 10 1 2 II 22 310 1 coscos 2 III 222 230 1 cos60coscos60 2 o III 令 得 2 0 dI d tantan 60 30o 2222 200 19 cos 30cos6030 232 III 4 在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度绕光的传播方向 旋转 见题 5 4 图 若入射的自然光强为 试证明透射光强为 0 I 0 1 1 cos4 16 IIt 证明 10 1 2 II 2 1cos IIt N1 N2 t 题 5 4 图 1 N 2 N 3 N 60o 1 N 2 N N t 22 222 000 cos90sin 111 cossinsin 21 cos4 2816 IItIt IttItIt 5 线偏振光入射到折射率为的玻璃片上 入射角是 入射光的电矢量与1 732 0 60 入射面成角 求由分界面上反射的光强占入射光强的百分比 0 30 解 设入射线偏振光振幅为 则入射光强为A 2 0 IA 入射光平行分量为 1 cos30o P AA 入射光垂直分量为 1 sin30o S AA 由 得 2 1sin603sini 2 30oi 由 12 1 112 tan 6030 tan 0 tantan 6030 o P o P iiA Aii 12 1 112 sin 6030 sin1 sin2sin 6030 o S o S iiA Aii 11 11 24 SS AAA 0 1 4 II 6 一线偏振光垂直入射到一方解石晶体上 它的振动面和主截面成角 两束折 0 30 射光通过在方解石后面的一个尼科耳棱镜 其主截面与入射光的振动方向成角 0 50 计算两束透射光的相对强度 60 A 解 1 sin30 2 o o AAA 3 cos30 2 o e AAA 当光振动面与 N 主截面在晶体主截面同侧 0 2 3 cos80cos80 2 o ee AAA 2 1 sin80sin80 2 oo oo AAA 22 22 22 22 sin 80 10 72 3 cos 80 o ee o oo IA IA 当光振动面与 N 主截面在晶体主截面两侧 0 2 3 cos20cos20 2 o ee AAA 方解石 N A o A e A A 50o N o A e A A 50o N 2 1 cos70sin20 2 oo oo AAA 22 22 22 22 sin 20 0 044 3 cos 20 o ee o oo IA IA 7 线偏振光垂直入射到一块光轴平行于表面的方解石波片上 光的振动面和波片 的主截面成角 求 透射出来的寻常光和非常光的相对强度为多少 用钠 0 30 光入时如要产生的相位差 波片的厚度应为多少 0 90589nm 解 1 sin30 2 o o AAA 2 1 4 o IA 3 cos30 2 o e AAA 2 3 4 e IA 1 3 o e I I 方解石对钠光 1 6581 486 oe nn 由 2 oe nnd 2 2 oe nnd 5 8 7 10 4 oe dcm nn 8 有一块平行石英片是沿平行于光轴方向切成一块黄光的波片 问这块石英片 14 o A e AA 应切成多厚 石英的 0 1 552 1 543 589 e nnnm 解 2 oe nnd 2 21 2 oe nndk 3 21 21 1 64 10 4 oe k dkcm nn 9 线偏振光垂直入射到一个表面和光轴平行的波片 透射出来后 原来在波片 中的寻常光及非常光产生了大小为的相位差 问波片的厚度为多少 问这块波片应怎样放置才能使透射出来的光是线 0 1 5442 1 5533 500 e nnnm 偏振光 而且它的振动面和入射光的振动面成的角 0 90 解 2 21 oe nndk 3 21 21 2 75 10 2 oe k dkcm nn 振动方向与晶体主截面成角45o 10 线偏振光垂直入射到一块表面平行于光轴的双折射波片 光振动面和波片光轴 成角 问波片中的寻常光和非常光透射出来后的相对强度如何 0 25 解 cos25o e AA sin25o o AA 2 2 2 tan 250 22 o oe eo IA IA 11 在两正交尼科耳棱镜 N1和 N2之间垂直插入一块波片 发现 N2后面有光射出 但当 N2绕入射光向顺时针转过后 N2的视场全暗 此时 把波片也绕入射光 0 20 顺时针转过 N2的视场又亮了 问 这是什么性质的波片 N2要转过多大 0 20 角度才能使 N
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年注册验船师资格考试(B级船舶检验法律法规)综合试题及答案一
- 2025年项目经理IT行业面试模拟题及答案详解
- 2025年注册验船师资格考试(A级船舶检验专业案例分析)测试题及答案一
- 2025年注册验船师资格考试(B级船舶检验专业基础安全)练习题及答案一
- 2025年公需科目人工智能和健康考试题和答案
- 海安银行考试题库及答案
- 2025年检察院审查起诉官选聘预测试题与解析
- 2025年软件编程工程师招聘面试模拟题及答案详解
- 株洲知识培训班课件
- 公务员面试题及答案法院
- NB∕T 10209-2019 风电场工程道路设计规范
- GB/T 29256.5-2012纺织品机织物结构分析方法第5部分:织物中拆下纱线线密度的测定
- GB/T 27021.1-2017合格评定管理体系审核认证机构要求第1部分:要求
- GB/T 17107-1997锻件用结构钢牌号和力学性能
- GB/T 1410-2006固体绝缘材料体积电阻率和表面电阻率试验方法
- FZ/T 07010-2021绿色设计产品评价技术规范针织服装
- 科幻小说《三体》内容简介读书分享会ppt图文课件
- 校园文化施工组织设计范本
- 大地的耳朵-阅读答案
- 2021年内江市工会系统招聘笔试试题及答案解析
- 医疗器械质量体系设备计量结果确认表
评论
0/150
提交评论