2002(SCI)OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXED AND PROPORTIONAL TRANSACTION COSTS_第1页
2002(SCI)OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXED AND PROPORTIONAL TRANSACTION COSTS_第2页
2002(SCI)OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXED AND PROPORTIONAL TRANSACTION COSTS_第3页
2002(SCI)OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXED AND PROPORTIONAL TRANSACTION COSTS_第4页
2002(SCI)OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXED AND PROPORTIONAL TRANSACTION COSTS_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXEDAND PROPORTIONAL TRANSACTION COSTSBERNT KSENDALAND AGNES SULEMSIAM J. CONTROL OPTIM. c 2002 Society for Industrial and Applied MathematicsVol. 40, No. 6, pp. 17651790Abstract. We consider a market model with one risk-free and one risky asset, in which thedynamics of the risky asset are governed by a geometric Brownian motion. In this market weconsider an investor who consumes from the bank account and who has the opportunity at any timeto transfer funds between the two assets. We suppose that these transfers involve a xed transactioncost k0, independent of the size of the transaction, plus a cost proportional to the size of thetransaction.The objective is to maximize the cumulative expected utility of consumption over a planninghorizon. We formulate this problem as a combined stochastic control/impulse control problem, whichin turn leads to a (nonlinear) quasi-variational HamiltonJacobiBellman inequality (QVHJBI). Weprove that the value function is the unique viscosity solution of this QVHJBI. Finally, numericalresults are presented.Key words. portfolio selection, transaction cost, impulse control, quasi-variational inequalities,viscosity solutionsAMS subject classications. Primary, 93E20, 91B28; Secondary, 60H30, 49L25, 35R45PII. S03630129003760131. Introduction. Let (,F,P) be a probability space with a given ltrationFtt0. We denote by X(t) the amount of money the investor has in the bank attime t and by Y(t) the amount of money invested in the risky asset at time t.Weassumethatintheabsenceofconsumptionandtransactionstheprocess X(t)growsdeterministically at exponential rate r, while Y(t) is a geometric Brownian motion;i.e.,dX(t)=rX(t)dt, X(0)=x,(1.1)dY(t)=Y(t)dt+Y(t)dW(t),Y(0)=y,(1.2)where W(t) is one-dimensional Ft-Brownian motion and r0 and negationslash= 0 areconstants.Suppose that at any time t the investor is free to choose a consumption ratec(t) 0. This consumption is automatically drawn from the bank account holdingwithnoextracosts. Moreover,atanytimetheinvestorcandecidetotransfermoneyfromthebankaccounttothestockandconversely. Assumethatapurchaseofsizelscriptofstocksincursatransactioncostconsistingofasumofaxedcostk0(independentofthesizeofthetransaction)plusacost lscript proportionaltothetransaction( 0).These costs are drawn from the bank account. Similarly a sale of size m of stocksincursthexedcost K0plustheproportionalcost m ( 0). Forsimplicitywewillassumethat K =k and =. InthiscontexttheinvestorwillonlychangehisReceived by the editors July 28, 2000; accepted for publication (in revised form) July 3, 2001;published electronically February 14, 2002. This work was partially supported by the French-Norwegian cooperation project Aur 99050./journals/sicon/40-6/37601.htmlDepartment of Mathematics, University of Oslo, P. O. Box 1053 Blindern, N0316 Oslo, Nor-way (oksendalmath.uio.no) and Norwegian School of Economics and Business Administration,Helleveien 30, N5045 Bergen, Norway.INRIA, Domaine de Voluceau-Rocquencourt B.P. 105, F78153 Le Chesnay Cedex, France(Agnes.Suleminria.fr).1765Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.php1766 BERNT KSENDAL AND AGNES SULEMportfolio nitely many times in any nite time interval. The control of the investorwillconsistofacombinationofaregularstochasticcontrol c(t)andanimpulsecontrolv =(1,2,.;1,2,.). Here 0 10, 0 bracketleftbiggr+(r)222(1)bracketrightbigg.(1.23)See,e.g.,DN,section2.Fromnowonweassumethat(1.23)holds.Itiseasytoseethat(x,y)0(x,y).(1.24)ThisisalsopointedoutinCorollary2.2,tobeprovedlater.DNandSSconsiderthecasewithproportionaltransactioncostsonly(k=0),inwhichcasetheproblemcanbeformulatedasasingularstochasticcontrolproblem.It is proved in DN and SS that under some conditions there exist two straightlines1,2throughtheorigin,boundingacone NT,suchthatitisoptimaltomakeno transactions if (X(t),Y(t) NT and make transactions corresponding to localtimeat(NT),resultinginreectionsbacktoNT everytime(X(t),Y(t) (NT).Dependingontheparameters,theMertonlinemayormaynotgobetweenthelines1,2(seeFigure1.2andthediscussioninAMS, section7.2). Foranextensionoftheseresultstomarketswithjumps,seeFS1andFS2.xy =1x21NTThe Merton lineyFig.1.2. The no-transaction cone when k =0.The rst paper to model markets with xed transaction costs k0 by impulsecontroltheoryseemstobeEH,buttheydonotconsideroptimalconsumption.Perhaps the paper which is closest to ours is K. Here optimal consumption inmarkets with xed transaction costs is considered, but consumption is allowed onlyat the discrete times of the transactions. This makes it possible to put the problemwithintheframeworkofimpulsecontrolandquasi-variationalinequalities.In our paper we allow consumption to take place at any time, independent ofthe (discrete) times chosen for the transactions. As explained above, we model thisDownloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.phpOPTIMAL PORTFOLIO WITH FIXED TRANSACTION COSTS 1769asacombinedstochasticcontrolandimpulsecontrolproblem,oracombinedcontrolproblem,forshort.Insection2weintroducequasi-variationalHamiltonJacobiBellmaninequalities(QVHJBI) associated with this combined control problem. We point out that if afunction(x,y)satisestheseQVHJBI(andsomeadditionalsmoothnessconditions),then coincideswiththevaluefunction,denedby(1.16). (SeeTheorem2.1).Insection3weprovethatthevaluefunctionistheuniqueviscositysolutionoftheQVHJBIformulatedinsection2.Finally in section 4 we present some numerical estimates for and the optimalconsumption-investmentpolicy w=(c,v).Forotherrecentpapersonimpulsecontrolandcombinedcontrolsee,e.g.,B,M, CZ1, CZ2, and BP and the references therein. We refer to BL and Sforacomprehensivetreatmentofthegeneraltheoryofimpulsecontrolanditsquasi-variationalinequalities.Remark1.1. AnothernaturalchoiceofsolvencyregionwouldbethesetS+:=0,)0,).(1.25)Thischoicemodelsasituationinwhichnoborrowingorshort-sellingisallowed. Wewill mostly use the choice S given by (1.9) in this paper, but we point out that theproofscarryovertotheS+casewithonlyminormodications. (UsuallytheS+caseissimpler.)2. Quasi-variationalHamiltonJacobiBellmaninequalities(QVHJBI).LetAcbethegeneratoroftheprocessZc(t)=(s+t,Xc(t),Yc(t)whentherearenotransactions;i.e., Acisthepartialdierentialoperatorgivenby(Acf)(s,x,y)=fs+(rxc)fx+yfy+122y22fy2(2.1)for any f : R3 R and (s,x,y) such that the derivatives exist. In particular, iff(s,x,y)=esg(x,y),then(Acf)(s,x,y)=esLcg(x,y),whereLcg(x,y)=g+(rxc)gx+ygy+122y22gy2.(2.2)For (x,y)Sand negationslash=0setxprime=xprime()=xk|,yprime=yprime()=y+.(2.3)Wedenetheinterventionoperator M byMh(x,y)=suph(xprime,yprime); R0,(xprime,yprime)S(2.4)foralllocallybounded h:SR+,(x,y)S.If(xprime,yprime)negationslash S forall R0,weset Mh(x,y)=0. Ifforall(x,y)Sthereexists(xprime,yprime)=(xprime(),yprime()SsuchthatMh(x,y)=h(xprime,yprime),Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.php1770 BERNT KSENDAL AND AGNES SULEMthenwesethatwide(x,y)=hatwideh(x,y)=(xprime,yprime).(2.5)(More precisely, we lethatwide(x,y) denote a measurable selection of the map (x,y) (xprime,yprime).)If is the value function for our problem, then for each s we can interpretM(s,x,y)asthemaximalvaluewecanobtainbymakinganadmissibletransactionat(s,x,y).Following B we call a locally bounded function h :tildewideSR+stochasticallyC2with respect to Zcif (Ach)(z) exists for almost all z =(s,x,y) with respect totheGreenmeasure (expectedoccupationtimemeasure) G(z0,),andthegeneralizedDynkinformulaholdsfor h,i.e.,Ez0h(Zc(prime)=Ez0h(Zc()+Ez0bracketleftbiggprimeintegraldisplay(Ach)(Zc(t)dtbracketrightbiggforallstoppingtimes ,primesuchthat prime TR:=inft0,|Zc(t)|RR forsome R0;Zc(t)negationslashtildewideSand XH(z)=1ifz H, XH(z)=0ifz negationslash H.If h isafunctionon S,wedeneLh(x,y)=supc0braceleftbiggLch(x,y)+cbracerightbigg, (x,y)S,(2.7)andL0h(x,y)=L0h(0,y)=h+yhy+122y22hy2(2.8)forallpoints(x,y)wherethepartialderivativesof h involvedin Lch exist.Wethenset(see(1.11)(1.13)fordenitionsof lscript1,lscript2,and P)L1h(x,y)=braceleftBiggLh(x,y) for (x,y)S(lscript1lscript2)0,P,L0h(x,y) for (x,y)0,P.(2.9)Notethatat0,Ptheonlyadmissibleconsumptionis c=0.ByadaptingTheorem3.1inBtooursituation,wegetthefollowingsucientQVHJBI.Theorem2.1. Let S andtildewideS be as dened in (1.9) and put U = S(lscript1lscript2),tildewideU =0,)U.Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.phpOPTIMAL PORTFOLIO WITH FIXED TRANSACTION COSTS 1771(i) Suppose we can nd a locally bounded function : SR+such that C1(U)and(s,x,y):=es(x,y) isstochastically C2withrespectto Zc(t)(2.10)forallMarkovcontrols c=c(x,y);L1 0 a.e. withrespectto G(z0,)ontildewideU forall z0tildewideU;(2.11)(x,y)M(x,y) forall(x,y) U.(2.12)Then(x,y)(x,y) forall(s,x,y)tildewideU.(ii)DenethecontinuationregionD=(x,y) U;(x,y) M(x,y).SupposeL1(x,y)=0 on D(2.13)andthathatwide(x,y)=hatwide(x,y)(denedin(2.5)existsforall(x,y)S. Denec(x,y)=braceleftBigg(x)11for (x,y) U 0,P,0 for (x,y)0,P,anddenetheimpulsecontrolv:=(1,2,.;1,2,.)asfollows.Put 0=0andinductivelyk+1=inftk;(X(k)(t),Y(k)(t)negationslash D,(2.14)k+1=hatwide(X(k)(k+1),Y(k)(k+1),(2.15)wherehatwide isasdenedin(2.5)and(X(k),Y(k)istheprocessobtainedbyapplyingthecombinedcontrolw(k):=(c,(1,.,k;1,.,k),k=1,2,.Suppose w:=(c,v)Wandthatet(X(w)(t),Y(w)(t)0 as t a.s.(2.16)andthatthefamilye(X(w)(),Y(w)(); stopping time(2.17)isuniformlyintegrable. Then(x,y)=(x,y)(2.18)Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.php1772 BERNT KSENDAL AND AGNES SULEMand wisoptimal.Proof. ThisfollowsbytheproofofTheorem3.1inBwithonlyminormodi-cations. NotethattheHamiltonJacobiBellmaninequality(HJBI)(3.7)inBhasthefollowingforminourcase,if(x,y) U 0,P:L(x,y)=supc0braceleftbigg+(rxc)x+yy+122y22y2+cbracerightbigg0.This can only hold ifx0, and then the supremum of this expression is obtainedwhenc=c=parenleftbiggxparenrightbigg 11.(2.19)If (x,y) 0,P, then only the zero consumption c = c=0 is admissible, so againbytheHJBIweget L0(0,y)=0.Wecanusethistoprovetheclaim(1.24),asfollows.Corollary2.2.(i) Asin(1.21)(1.22)let0(x,y)=C1(x+y)(2.20)bethevaluefunctionfortheMertonproblem(k=0). Then(x,y)0(x,y) forall(x,y)S.(2.21)(ii) Let b beaconstantsuchthat1 b 1+.(2.22)Suppose.(2.23)Thenthereexists K0,x+byk(1b) for +(1)(K)11.(2.27)If(2.23)holds,then(2.27)holdsforK largeenough. Thus(2.24)followsfromTheo-rem2.1(i).Remark2.3. Corollary2.2provesinparticularthatthevaluefunctionisnite.Moreover,(x,y)isbounded oneverystraightlinein S oftheformx+by=constantforeveryconstant b 1,1+.Remark2.4(Some comments on the boundary behavior). Suppose the currentposition of the investor is a point (x,y) S. If we make a transaction of size atthatinstant,thenafterthetransactionthenewpositionisgivenbybraceleftbiggxprime=x|k,yprime=y+.(2.28)Hencexprime+(1)yprime=x+(1)yk(|+)(2.29)andxprime+(1+)yprime=x+(1+)yk(|).(2.30)Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.php1774 BERNT KSENDAL AND AGNES SULEMx0lscript2(xprime,yprime)QP(xprime,yprime)(x,y)(x,y)lscript1yFig.2.1. Examples of transactions (buying and selling).In particular, if we sell stocks (0),thenxprime+(1+)yprime= x+(1+)y k,so(x,y) will move to a point (xprime,yprime) on the lineparallelto lscript2lyingk1+unitsbelowtheparallelof lscript2through(x,y).WenowusethistodeducetheboundarybehaviorofthevaluefunctiononS.(a) If (x,y) lscript1, then we have to make an immediate transaction to avoid thediusionY(t)takingusoutofS. Bytheaboveweseethattheonlypossibilityistosell stocksofsuchanamountthat(xprime,yprime)=(0,0). Weconcludethat(x,y)=M(x,y)=0 for(x,y) lscript1.(2.31)(b) If(x,y) lscript2,wearguesimilarly: Theonlyadmissibleactionistobuy stocksimmediatelyofsuchanamountthat(xprime,yprime)=(0,0). Hence(x,y)=M(x,y)=0 for(x,y) lscript2.(2.32)(c) Onthesegment0liminfnMu(n)+=liminfnu(n)+forsome0.Since u iscontinuous,thereisaneighborhood G of 0suchthatu(prime)liminfu(n)+ forall prime G.Butifnisbigenoughwehavelscript(n)G negationslash=,sosincenisamaximumpointofuonlscript(n)wehaveu(n) u(prime) for n bigenough.Thiscontradictionshowsthat()holds,andtheproofiscomplete.Lemma3.3.(i)Let u:SR. Then Mu Mu.(ii)Let :SR besuchthat M. Then M.Proof. (i) Choose 0,nS, n =1,2,.,such that n 0and Mu(n) Mu(0)asn . ThenbyLemma3.2(i)appliedtotheuscfunction u,Mu(0)= limnMu(n)limsupnMu(n)Mu(0).(ii) Choose 0,nS, n =1,2,.,such that n 0and M(n) M(0)as n . Then(0)M(0)= limnM(n)liminfnM(n)M(0).Corollary3.4. Suppose u : SR is usc and u(0) Mu(0)+ for some0S, 0. Then u(0) Mu(0)+.Proof. u(0) Mu(0)+=Mu(0) Mu(0)+ byLemma3.3(i).Asin(2.7)welet L bethedierentialoperatorLh(x,y)=supc0braceleftbiggh+(rxc)hx+yhy+122y22hy2+cbracerightbigg,(3.1)andasin(2.2)wesetMh(x,y)=supnegationslash=0h(xprime,yprime);(xprime,yprime)S for (x,y)S,(3.2)wherexprime=xk|,yprime=y+.(3.3)Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.phpOPTIMAL PORTFOLIO WITH FIXED TRANSACTION COSTS 1777Theinequalities(2.11),(2.12),and(2.13)ofTheorem2.1togetherwiththeboundarybehavior(2.36)canbecombinedintooneequationasfollows:F(D2(),D(),)=0 forall =(x,y)S,(3.4)whereF:R22R2RSR2 RisdenedbyF(A,p,g,)=max(A,p,g,),(Mgg)(),S0,(A,p,g,),0,Q,0(A,p,g,) 0,P,(Mgg)() lscript1lscript2,(3.5)where(A,p,g,)=g+r1p1+2p2+12222A22+maxc0parenleftbiggcp1+cparenrightbigg(3.6)and0(A,p,g,)=g+2p2+12222A22,A=bracketleftbigAijbracketrightbig1i,j2.(3.7)Note that F is not a local operator: The value of F at (A,p,g,) depends on thevalueof g onthewholespace S.AlsonotethatF(A,p,g,)=max(A,p,g,),(Mgg)() forall S(3.8)andthatF(A,p,g,)=F(A,p,g,) (i.e., F islsc).(3.9)Following Barles B, we now give the denition of the viscosity solution of ellipticequationsoftype(3.4).Definition3.5.(i)Afunction u USC(S)isaviscositysubsolutionofF(D2u(),Du(),u,)=0 forall =(x,y)S(3.10)ifforeveryfunctionf whichisC2inaneighbourhoodofS andforeverypoint0Ssuchthat f u on S and f(0)=u(0)wehaveF(D2f(0),Df(0),u,0)0.(3.11)(ii) A function u LSC(S) is a viscosity supersolution of (3.10) if for everyfunction f whichis C2inaneighbourhoodof S andforeverypoint 0Ssuchthatf u on S and f(0)=u(0)wehaveF(D2f(0),Df(0),u,0)0.(3.12)Downloaded 01/27/16 to 02. Redistribution subject to SIAM license or copyright; see /journals/ojsa.php1778 BERNT KSENDAL AND AGNES SULEM(iii) We say that a function u:SR is a viscosity solution of (3.10) if u islocally bounded and u is a viscosity subsolution and u is a viscosity supersolution of(3.10).Anequivalentdenitionofviscositysolutionswhichisusefulforprovingunique-nessresultsisthefollowing(seeCIL,section2).Definition3.6.(i)Afunction u USC(S)isaviscositysubsolutionof(3.4)ifF(A,p,u,)0 forall (p,A)J2,+Su(), S.(3.13)(ii)Afunction u LSC(S)isaviscositysupersolutionof(3.4)ifF(A,p,u,)0 forall (p,A)J2,Su(), S.Here the second order “superjets” J2,+S, J2,Sand their “closures”J2,+S,J2,SaredenedbyJ2,+Su()=braceleftBigg(p,A) R2R22;limsupSbraceleftbigu()u()p()12()TA()|2bracerightbig0bracerightBigg(3.14)(where()Tdenotesmatrixtransposed),J2,+Su()=(p,A) R2R22; (n,pn,An)SR2R22,with(pn,An) J2,+Su(n)and(n,u(n),pn,An)(,u(),p,A), when n ,(3.15)andJ2,Su=J2,+S(u),J2,Su=J2,+S(u).(3.16)Wearenowreadyfortherstmainresultofthissection.Theorem3.7. Supposethat(2.23)holds. Thenthevaluefunctionisaviscositysolutionof(3.4).Proof. We rst make some useful observations. Suppose w =(c,v) Wis anadmissible control with v =(1,2,.;1,2,.), where 1 0 a.s. Then by theMarkovproperty wehave,with Jwasin(1.14),Jw(z)=Ezbracketleftbiggintegraldisplay0e(s+t)c(t)dt+Jw(Z(w)()bracketrightbigg(3.17)forallstoppingtimes 1.Notethat()M() forall S.(3.18)Toseethis,supposeonthecontrarythatthereexists 1suchthat(1)0 a.s.(A)Weprovethatisaviscositysubsolution. Tothisend,letf beaC2functionin a neighborhood of S and let 0Sbe such that f onS and f(0)=(0).Weconsiderthefollowingtwocasesseparately.Case1.(0)M(0).Thenby(3.8)F(D2f(0),Df(0),f(0),0)(M)(0)=0,andhence(3.11)holdsat 0for u=.Case2.(0) M(0).It suces to prove that Lf(0) 0. We argue by contradiction: Suppose 0=(x0,y0) Sand Lf(0) 0. Hence by continuity,fx() 0 in a neighborhood G of 0. But then,with =(x,y),Lf()=f()+(rxhatwidec)fx+yfy+122y22fy2+hatwidecwith hatwidec=hatwidec()=(fx)11forall GS.HenceLf()iscontinuousonGSandsothereexistsa(bounded)neighborhoodGof 0suchthat G=(x,y);|xx0| 0andLf() M(0)+,wecanbyCorollar

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论