高中数学 11.导数在实际生活中的应用导学案.doc_第1页
高中数学 11.导数在实际生活中的应用导学案.doc_第2页
高中数学 11.导数在实际生活中的应用导学案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数在实际生活中的应用【学习任务】1通过本课的教学,对学生进行函数思想和方法的培养2通过本课例题的分析与解答,培养学生的发散思维能力和逐步形成运用导数知识解决实际问题的能力3通过解决科技、经济、社会中的某些简单实际问题,体验导数求最大值与最小值的应用【课前预习】1、 挖一个半圆柱形的水池,其池面为圆柱的轴截面,若池面周长为定值2a,则水池的最大容积是 【合作探究】例1在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?例2用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?例3某造船公司年最高造船量是20艘,已知造船艘的产值为(万元),成本函数为(万元)。又在经济学中,函数的边际函数定义为。求:利润函数及边际利润数;年造船量安排多少艘时,可使公司造船的年利润最大?例4某工厂拟建一座平面图(如图所示)为矩形且面积为200m2 的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域;(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.【自我检测】1、图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(图2).当这个正六棱柱容器的底面边长为 时,其容积最大. 2、某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元)。问该产每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入成本)3、一根水平放置的长方体形枕木的安全负荷与它的宽度a成正比,与它的厚度d的平方成正比,与它的长度l的平方成反比. (1)将此枕木翻转90(即宽度变为了厚度),枕木的安全负荷变大吗?为什么? (2)现有一根横断面为半圆(半圆的半径为R)的木材,用它来截取成长方形的枕木,其长度即为枕木规定的长度,问如何截取,可使安全负荷最大?a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论