




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二分册材料力学 第七章梁的变形 7 1概述 7 2梁的挠曲线近似微分方程 7 3积分法计算梁的位移 7 4叠加法计算梁的位移 7 5梁的刚度校核 目录 梁的变形 7 概述 梁的变形 研究范围 等直梁在对称弯曲时位移的计算 研究目的 对梁作刚度校核 解超静定梁 为变形几何条件提供补充方程 梁的变形 1 挠度 横截面形心沿垂直于轴线方向的线位移 用v表示 与f同向为正 反之为负 2 转角 横截面绕其中性轴转动的角度 用 表示 顺时针转动为正 反之为负 二 挠曲线 变形后 轴线变为光滑曲线 该曲线称为挠曲线 其方程为 v f x 三 转角与挠曲线的关系 一 度量梁变形的两个基本位移量 小变形 梁的变形 7 2梁的挠曲线近似微分方程 一 挠曲线近似微分方程 式 2 就是挠曲线近似微分方程 小变形 1 梁的变形 对于等截面直梁 挠曲线近似微分方程可写成如下形式 1 微分方程的积分 2 位移边界条件 梁的变形 7 3积分法计算梁的位移 讨论 适用于小变形情况下 线弹性材料 细长构件的平面弯曲 可应用于求解承受各种载荷的等截面或变截面梁的位移 积分常数由挠曲线变形的几何相容条件 边界条件 连续条件 确定 优点 使用范围广 直接求出较精确 缺点 计算较繁 支点位移条件 连续条件 光滑条件 梁的变形 例1 求下列各等截面直梁的弹性曲线 最大挠度及最大转角 建立坐标系并写出弯矩方程 写出微分方程并积分 应用位移边界条件求积分常数 解 梁的变形 写出弹性曲线方程并画出曲线 最大挠度及最大转角 梁的变形 解 建立坐标系并写出弯矩方程 写出微分方程并积分 例2 求下列各等截面直梁的弹性曲线 最大挠度及最大转角 梁的变形 应用位移边界条件求积分常数 梁的变形 写出弹性曲线方程并画出曲线 最大挠度及最大转角 梁的变形 例3 试用积分法求图示梁的挠曲线方程和转角方程 并求C截面挠度和A截面转角 设梁的抗弯刚度EI为常数 解 1 外力分析 求支座约束反力 研究梁ABC 受力分析如图 列平衡方程 梁的变形 2 内力分析 分区段列出梁的弯矩方程 3 变形分析 AB段 由于积分后得 梁的变形 BC段 由于 积分后得 边界条件 当连续光滑条件 代入以上积分公式中 解得 梁的变形 故挠曲线方程和转角方程分别为 由此可知 梁的变形 7 4叠加法计算梁的位移 一 载荷叠加多个载荷同时作用于结构而引起的变形等于每个载荷单独作用于结构而引起的变形的代数和 二 结构形式叠加 逐段刚化法 梁的变形 例4 按叠加原理求A点转角和C点挠度 解 载荷分解如图 由梁的简单载荷变形表 查简单载荷引起的变形 q P P A A A B B B C a a 梁的变形 q P P A A A B B B C a a 叠加 梁的变形 例5 试用叠加法求图示梁C截面挠度和转角 设梁的抗弯刚度EI为常数 已知AB BC l 2 解 将原图分解成图 a 和图 b 所示情况 查表 对于图 a 有 梁的变形 于是有 对于图 b 有 故梁C截面挠度为 转角为 顺时针 说明 对于图 a BC段无内力 因而BC段不变形 BC段为直线 梁的变形 例6 按叠加原理求C点挠度 解 载荷无限分解如图 由梁的简单载荷变形表 查简单载荷引起的变形 叠加 C 梁的变形 例7 结构形式叠加 逐段刚化法 原理说明 梁的变形 7 5梁的刚度校核 一 梁的刚度条件 其中 称为许用转角 f L 称为许用挠跨比 通常依此条件进行如下三种刚度计算 校核刚度 设计截面尺寸 设计载荷 对于土建工程 强度常处于主要地位 刚度常处于从属地位 特殊构件例外 梁的变形 例8 图示木梁的右端由钢拉杆支承 已知梁的横截面为边长a 200mm的正方形 均布载荷集度 弹性模量E1 10GPa 钢拉杆的横截面面积A 250mm2 弹性模量E2 210GPa 试求拉杆的伸长量及梁跨中点D处沿铅垂方向的位移 解 静力分析 求出支座A点的约束反力及拉杆BC所受的力 列平衡方程 梁的变形 本题既可用积分法 也可用叠加法求图示梁D截面的挠度 积分法 拉杆BC的伸长为梁AB的弯矩方程为挠曲线的近似微分方程积分得 梁的变形 边界条件 当时 当时 代入上式得故当时 叠加法 说明 AB梁不变形 BC杆变形后引起AB梁中点的位移 与BC不变形 AB梁变形后引起AB梁中点的位移叠加 梁的变形 例9 下图为一空心圆截面梁 内外径分别为 d 40mm D 80mm 梁的E 210GPa 工程规定C点的 f L 0 00001 B点的 0 001弧度 试校核此梁的刚度 梁的变形 图1 图2 图3 解 结构变换 查表求简单载荷变形 梁的变形 图1 图2 图3 叠加求复杂载荷下的变形 梁的变形 校核刚度 梁的变形 一 挠曲线近似微分方程的近似性反映在哪几方面 二 用积分法求图示组合梁的挠曲线方程时 需应用的支承条件和连续条件是什么 三 长度为L 重量为P的等截面直梁 放置在水平刚性平面上 若在端点施力P 3上提
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初级英语口语面试突破常见问题与答案
- 2025年人事经理揭秘招聘面试内幕销售岗位预测题
- 2025年城市管道天然气项目合作计划书
- 2025年地面瞄准设备、定位定向设备项目合作计划书
- 抢险救援现场安全员培训课件
- 2025年秋学期苏教版小学数学三年级上册教学计划
- 小学教师专业题库及答案
- 2025年智能一体化电源系统合作协议书
- 批注式阅读课件
- 扫大街的父亲课件
- 1.1 常见的植物(教学课件)科学青岛版二年级上册(新教材)
- 2025年学习二十届全会精神知识竞赛题库及答案
- 2025福建漳州闽投华阳发电有限公司招聘52人备考试题及答案解析
- 初一启新程扬帆再出发-2025-2026学年上学期七年级(初一)开学第一课主题班会课件
- 寿险调查培训课件下载
- 中国法制史试题题库(附答案)
- 电池火灾安全知识培训课件
- 2025年CAD机械制图考试题库及答案
- Z20名校联盟(浙江省名校新高考研究联盟)2026届高三第一次联考 语文试卷(含答案详解)
- 2025工会基础知识考试题库及参考答案
- 2025年安徽省宿州市辅警协警笔试笔试测试卷(含答案)
评论
0/150
提交评论