全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【例2】一个正三棱柱的三视图如右图所示,求这个正三棱柱的表面积.解:.【例4】如图中,正方体ABCDA1B1C1D1,E、F分别是AD、AA1的中点.(1)求直线AB1和CC1所成的角的大小;(2)求直线AB1和EF所成的角的大小.解:(1)如图,连结DC1 , DC1AB1, DC1 和CC1所成的锐角CC1D就是AB1和CC1所成的角. CC1D=45, AB1 和CC1所成的角是45.(2)如图,连结DA1、A1C1, EFA1D,AB1DC1, A1DC1是直线AB1和EF所成的角. A1DC1是等边三角形, A1DC1=60,即直线AB1和EF所成的角是60.【例1】已知空间边边形ABCD各边长与对角线都相等,求异面直线AB和CD所成的角的大小. 解:分别取AC、AD、BC的中点P、M、N连接PM、PN,由三角形的中位线性质知PNAB,PMCD,于是MPN就是异面直线AB和CD成的角(如图所示).连结MN、DN,设AB=2, PM=PN=1.而AN=DN=,由MNAD,AM=1,得MN=,MN2=MP2+NP2,MPN=90.异面直线AB、CD成90角.【例2】在正方体ABCD-A1B1C1D1中,E、F分别为棱BC、C1D1的中点. 求证:EF平面BB1D1D. 证明:连接AC交BD于O,连接OE,则OEDC, OE=DC. DCD1C1, DC=D1C1 , F为D1C1的中点,ABC D E F GM O OED1F, OE=D1F, 四边形D1FEO为平行四边形. EFD1O. 又 EF平面BB1D1D, D1O平面BB1D1D, EF平面BB1D1D.【例3】如图,已知、分别是四面体 的棱、的中点,求证:平 面. 证明:如右图,连结,交于点,连结,在中,、分别是、中点, ,为中点, 为中点,在中,、为、中点, ,又平面,平面, 平面.点评:要证明直线和平面平行,只须在平面内找到一条直线和已知直线平行就可以了. 注意适当添加辅助线,重视中位线在解题中的应用.【例4】如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN/平面PAD;(2)若,求异面直线PA与MN所成的角的大小.解:(1)取PD的中点H,连接AH,由N是PC的中点, NH. 由M是AB的中点, NHAM, 即AMNH为平行四边形. . 由, .(2) 连接AC并取其中点为O,连接OM、ON, OMBC,ONPA, 所以就是异面直线PA与MN所成的角,且MONO. 由,, 得OM=2,ON=所以,即异面直线PA与MN成30的角点评:已知中点,牢牢抓住中位线得到线线平行,通过线线平行转化为线面平行. 求两条异面直线所成角,方法的关键也是平移其中一条或者两条直线,得到相交的线线角,通过解三角形而得.【例2】已知棱长为1的正方体ABCDA1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角的正弦值.解:取CD的中点F,连接EF交平面于O,连AO.由已知正方体,易知平面,所以为所求.在中,.所以直线AE与平面所成的角的正弦值为.【例2】如图, 在空间四边形ABCD中, 分别是的中点,求证:平面平面. 证明:为AC中点,所以. 同理可证 面BGD. 又易知EF/AC,则面BGD. 又因为面BEF,所以平面平面.知识要点:1. 点斜式:直线过点,且斜率为k,其方程为.2. 斜截式:直线的斜率为k,在y轴上截距为b,其方程为.3. 点斜式和斜截式不能表示垂直x轴直线. 若直线过点且与x轴垂直,此时它的倾斜角为90,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为,或. 4. 注意:与是不同的方程,前者表示的直线上缺少一点,后者才是整条直线.1. 两点式:直线经过两点,其方程为, 2. 截距式:直线在x、y轴上的截距分别为a、b,其方程为.3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.4. 线段中点坐标公式.1. 一般式:,注意A、B不同时为0. 直线一般式方程化为斜截式方程,表示斜率为,y轴上截距为的直线.2 与直线平行的直线,可设所求方程为;与直线垂直的直线,可设所求方程为. 过点的直线可写为.经过点,且平行于直线l的直线方程是;经过点,且垂直于直线l的直线方程是.3. 已知直线的方程分别是:(不同时为0),(不同时为0),则两条直线的位置关系可以如下判别:(1); (2);(3)与重合; (4)与相交.如果时,则;与重合;与相交.1. 点到直线的距离公式为 【例2】(1)求经过点且与直线平行的直线方程;(2)求经过点且与直线垂直的直线方程.解:(1)由题意得所求平行直线方程,化为一般式.(2) 由题意得所求垂直直线方程,化为一般式.【例3】已知直线l的方程为3x+4y12=0,求与直线l平行且过点(1,3)的直线的方程分析:由两直线平行,所以斜率相等且为,再由点斜式求出所求直线的方程. 解:直线l:3x+4y12=0的斜率为, 所求直线与已知直线平行, 所求直线的斜率为,又由于所求直线过点(1,3),所以,所求直线的方程为:,即.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式而直接写出方程,即,再化简而得.【例2】求经过两条直线和的交点,且平行于直线的直线方程.解:设所求直线的方程为,整理为. 平行于直线, ,解得.则所求直线方程为【例1】求过直线和的交点并且与原点相距为1的直线l的方程.解:设所求直线l的方程为, 整理得.由点到直线的距离公式可知,, 解得.代入所设,得到直线l的方程为.【例2】在函数的图象上求一点P,使P到直线的距离最短,并求这个最短的距离.解:直线方程化为. 设, 则点P到直线的距离为.当时,点到直线的距离最短,最短距离为.【例1】若直线(1+a)x+y+1=0与圆x2y22x0相切,则a的值为 .解:将圆x2y22x0的方程化为标准式:(x1)2y21, 其圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46673-2025粮油机械脱溶塔
- 安全员考试题库及答案pdf
- 2025年多功能商业综合体规划可行性研究报告及总结分析
- 2020-2025年试验检测师之道路工程押题练习试卷B卷附答案
- 2025年虚拟现实游戏平台开发项目可行性研究报告及总结分析
- 2025年盆栽定制制作合同协议
- 高级技师考试题库及答案
- 2025年泥鳅养殖合作协议
- 2025年民宿消防验收申请协议
- 2025年食品科技创新与市场前景可行性研究报告及总结分析
- 橡胶配方设计
- 手术部位预防感染
- 《狼来了》寓言故事演讲课件
- 人教版英语九年级全一册单词表(合订)-副本
- 2024年秋季外研版英语三年级上册单词描红1-6单元
- 加油站常见安全隐患
- 健康体检科报告管理制度
- 中学生青少年艾滋病知识(课件)
- 国际经济与贸易专业职业规划书
- 2024年资格考试-对外汉语教师资格证考试近5年真题附答案
- HY/T 0273.2-2023海洋灾害风险评估和区划技术导则第2部分:海浪
评论
0/150
提交评论