材料力学公式大全(机械)_第1页
材料力学公式大全(机械)_第2页
材料力学公式大全(机械)_第3页
材料力学公式大全(机械)_第4页
材料力学公式大全(机械)_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 材料力学常用公式材料力学常用公式 1 1 外力偶外力偶矩计算公式矩计算公式 P P 功率 功率 n n 转速 转速 2 2 弯矩 剪力和荷载集度之间的关系式弯矩 剪力和荷载集度之间的关系式 3 3 轴向拉压杆横截面上正应力的计算公式轴向拉压杆横截面上正应力的计算公式 杆件横截面 杆件横截面 轴力轴力F FN N 横截面面积 横截面面积A A 拉应力为正 拉应力为正 4 4 轴向拉压杆斜截面上的正应力与切应力计算公式 夹角轴向拉压杆斜截面上的正应力与切应力计算公式 夹角a a 从从 x x轴正方向逆时针转至外法线的方位角为正 轴正方向逆时针转至外法线的方位角为正 5 5 纵向变形和横向变形 拉伸前试样标距纵向变形和横向变形 拉伸前试样标距 l l 拉伸后试样标距 拉伸后试样标距 l1l1 拉伸前试样直径 拉伸前试样直径 d d 拉伸后试样直径 拉伸后试样直径 d1d1 6 6 纵向线应变和横向线应变纵向线应变和横向线应变 7 7 泊松比泊松比 8 8 胡克定律胡克定律 9 9 受多个力作用的杆件纵向变形计算公式受多个力作用的杆件纵向变形计算公式 2 10 10 承受轴向分布力或变截面的杆件 纵向变形计算公式承受轴向分布力或变截面的杆件 纵向变形计算公式 11 11 轴向拉压杆的强度计算公式轴向拉压杆的强度计算公式 12 12 许用应力许用应力 脆性材料脆性材料 塑性材料 塑性材料 13 13 延伸率延伸率 14 14 截面收缩率截面收缩率 15 15 剪切胡克定律 切变模量剪切胡克定律 切变模量G G 切应变 切应变g g 16 16 拉压弹性模量拉压弹性模量E E 泊松比 泊松比 和切变模量和切变模量G G之间关系式之间关系式 17 17 圆截面对圆心的极惯性矩 圆截面对圆心的极惯性矩 a a 实心圆 实心圆 b b 空心圆 空心圆 18 18 圆轴扭转时横截面上任一点切应力计算公式 扭矩圆轴扭转时横截面上任一点切应力计算公式 扭矩T T 所求 所求 点到圆心距离点到圆心距离r r 19 19 圆截面周边各点处最大切应力计算公式圆截面周边各点处最大切应力计算公式 3 20 20 扭转截面系数扭转截面系数 a a 实心圆 实心圆 b b 空心圆 空心圆 21 21 薄壁圆管 壁厚薄壁圆管 壁厚 R R0 0 10 10 R R0 0 为圆管的平均半径 扭转为圆管的平均半径 扭转 切应力计算公式切应力计算公式 22 22 圆轴扭转角圆轴扭转角与扭矩与扭矩T T 杆长 杆长l l 扭转刚度扭转刚度 GHGHp p的关系式的关系式 23 23 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同同一材料制成的圆轴各段内的扭矩不同或各段的直径不同 如阶梯轴 时 如阶梯轴 时 或或 24 24 等直圆轴强度条件等直圆轴强度条件 25 25 塑性材料塑性材料 脆性材料 脆性材料 26 26 扭转圆轴的刚度条件扭转圆轴的刚度条件 或或 27 27 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 28 28 平面应力状态下斜截面应力的一般公式平面应力状态下斜截面应力的一般公式 4 29 29 平面应力状态的三个主应力平面应力状态的三个主应力 30 30 主平面方位的计算公式主平面方位的计算公式 31 31 面内最大切应力面内最大切应力 32 32 受扭圆轴表面某点的三个主应力受扭圆轴表面某点的三个主应力 33 33 三向应力状态最大与最小正应力三向应力状态最大与最小正应力 34 34 三向应力状态最大切应力三向应力状态最大切应力 35 35 广义胡克定律广义胡克定律 36 36 四种强度理论的相当应力四种强度理论的相当应力 37 37 一种常见的应力状态的强度条件一种常见的应力状态的强度条件 38 38 组合图形的形心坐标计算公式组合图形的形心坐标计算公式 5 39 39 任意截面图形对一点的极惯性矩与以该点为原点的任意两正任意截面图形对一点的极惯性矩与以该点为原点的任意两正 交坐标轴的惯性矩之和的关系式交坐标轴的惯性矩之和的关系式 40 40 截面图形对轴截面图形对轴z z和轴和轴y y的惯性半径的惯性半径 41 41 平行移轴公式 形心轴平行移轴公式 形心轴z zc c 与平行轴与平行轴z z1 1 的距离为的距离为a a 图形面 图形面 积为积为A A 42 42 纯弯曲梁的正应力计算公式纯弯曲梁的正应力计算公式 43 43 横力弯曲最大正应力计算公式横力弯曲最大正应力计算公式 44 44 矩形 圆形 空心圆形的弯曲截面系数矩形 圆形 空心圆形的弯曲截面系数 45 45 几种常见截面的最大弯曲切应力计算公式 几种常见截面的最大弯曲切应力计算公式 为中性轴一为中性轴一 侧的横截面对中性轴侧的横截面对中性轴z z的静矩 的静矩 b b为横截面在中性轴处的宽度 为横截面在中性轴处的宽度 46 46 矩形截面梁最大弯曲切应力发生在中性轴处矩形截面梁最大弯曲切应力发生在中性轴处 47 47 工字形截面梁腹板上的弯曲切应力近似公式工字形截面梁腹板上的弯曲切应力近似公式 48 48 轧制工字钢梁最大弯曲切应力计算公式轧制工字钢梁最大弯曲切应力计算公式 6 49 49 圆形截面梁最大弯曲切应力发生在中性轴处圆形截面梁最大弯曲切应力发生在中性轴处 50 50 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处圆环形薄壁截面梁最大弯曲切应力发生在中性轴处 51 51 弯曲正应力强度条件弯曲正应力强度条件 52 52 几种常见截面梁的弯曲切应力强度条件几种常见截面梁的弯曲切应力强度条件 53 53 弯曲梁危险点上既有正应力弯曲梁危险点上既有正应力 又有切应力又有切应力 作用时的强度作用时的强度 条件条件 或或 54 54 梁的挠曲线近似微分方程梁的挠曲线近似微分方程 55 55 梁的转角方程梁的转角方程 56 56 梁的挠曲线方程梁的挠曲线方程 57 57 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶 部边缘处的正应力计算公式部边缘处的正应力计算公式 58 58 偏心拉伸 压缩 偏心拉伸 压缩 59 59 弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度 条件表达式条件表达式 7 60 60 圆截面杆横截面上有两个弯矩圆截面杆横截面上有两个弯矩和和同时作用时 合成弯同时作用时 合成弯 矩为矩为 61 61 圆截面杆横截面上有两个弯矩圆截面杆横截面上有两个弯矩和和同时作用时强度计算同时作用时强度计算 公式公式 62 62 63 63 弯拉扭或弯压扭组合作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式 64 64 剪切实用计算的强度条件剪切实用计算的强度条件 65 65 挤压实用计算的强度条件挤压实用计算的强度条件 66 66 等截面细长压杆在四种杆端约束情况下的临界力计算公式等截面细长压杆在四种杆端约束情况下的临界力计算公式 67 67 压杆的约束条件 压杆的约束条件 a a 两端铰支 两端铰支 l l b b 一端固定 一端自由 一端固定 一端自由 2 2 c c 一端固定 一端铰支 一端固定 一端铰支 0 7 0 7 d d 两端固定 两端固定 0 5 0 5 68 68 压杆的长细比或柔度计算公式压杆的长细比或柔度计算公式 69 69 细长压杆临界应力的欧拉公式细长压杆临界应力的欧拉公式 8 70 70 欧拉公式的适用范围欧拉公式的适用范围 71 71 压杆稳定性计算的安全系数法压杆稳定性计算的安全系数法 72 72 压杆稳定性计算的折减系数法压杆稳定性计算的折减系数法 73 73 关系需查表求得关系需查表求得 1 材料力学的任务 材料力学的任务 强度 刚度和稳定性 应力应力 单位面积上的内力 平均应力 1 1 A F pm 全应力全应力 dA dF A F pp A m A 00 limlim 1 2 正应力正应力 垂直于截面的应力分量 用符号表示 切应力切应力 相切于截面的应力分量 用符号表示 应力的量纲 GPaMPa m N Pa 2 国际单位制 22 cm kgfm kgf 工程单位制 线应变线应变 单位长度上的变形量 无量纲 其物理意义是构件上一点沿某一方向 变形量的大小 外力偶矩 传动轴所受的外力偶矩通常不是直接给出 而是根据轴的转速 n 与传递的功率 P 来计算 当功率 P 单位为千瓦 kW 转速为 n r min 时 外力偶矩为 m N9549 e n P M 当功率 P 单位为马力 PS 转速为 n r min 时 外力偶矩为 m N7024 e n P M 拉 压 杆横截面上的正应力 拉压杆件横截面上只有正应力 且为平均分布 其计算公式为 N F A 3 1 式中为该横截面的轴力 A 为横截面面积 N F 图1 2 9 正负号规定正负号规定 拉应力为正 压应力为负拉应力为正 压应力为负 公式 3 1 的适用条件 1 杆端外力的合力作用线与杆轴线重合 即只适于轴向拉 压 杆件 2 适用于离杆件受力区域稍远处的横截面 3 杆件上有孔洞或凹槽时 该处将产生局部应力集中现象 横截面上应力分布很不 均匀 4 截面连续变化的直杆 杆件两侧棱边的夹角时 0 20 拉压杆件任意斜截面 a 图 上的应力为平均分布 其计算公式为 全应力 3 2 cosp 正应力 3 3 2 cos 切应力 3 4 1 sin2 2 式中为横截面上的应力 正负号规定 由横截面外法线转至斜截面的外法线 逆时针转向为正 反之为负 拉应力为正 压应力为负 对脱离体内一点产生顺时针力矩的为正 反之为负 两点结论 1 当时 即横截面上 达到最大值 即 当 时 即 0 0 max 0 90 纵截面上 0 0 90 2 当时 即与杆轴成的斜截面上 达到最大值 即 0 45 0 45 max 2 1 2 拉 压 杆的应变和胡克定律 1 变形及应变 杆件受到轴向拉力时 轴向伸长 横向缩短 受到轴向压力时 轴向缩短 横向伸长 如图 3 2 图 3 2 轴向变形 轴向线应变 横向变形 1 lll l l 1 bbb 横向线应变 正负号规定 伸长为正 缩短为负 b b 10 2 胡克定律 当应力不超过材料的比例极限时 应力与应变成正比 即 3 5 E 或用轴力及杆件的变形量表示为 3 6 N F l l EA 式中 EA 称为杆件的抗拉 压 刚度 是表征杆件抵抗拉压弹性变形能力的量 公式 3 6 的适用条件 a 材料在线弹性范围内工作 即 p b 在计算时 l 长度内其 N E A 均应为常量 如杆件上各段不同 则应分段计算 l 求其代数和得总变形 即 3 7 1 n i i i ii N l l E A 3 泊松比 当应力不超过材料的比例极限时 横向应变与轴向应变之比的绝对值 即 3 8 表 1 1 低碳钢拉伸过程的四个阶段 阶 段图 1 5 中线段 特征点说 明 弹性阶段oab 比例极限 p 弹性极限 e 为应力与应变成正比的最高应力 p 为不产生残余变形的最高应力 e 屈服阶段bc 屈服极限 s 为应力变化不大而变形显著增加时的最低 s 应力 强化阶段ce 抗拉强度 b 为材料在断裂前所能承受的最大名义应力 b 局部形变阶段ef产生颈缩现象到试件断裂 表 1 2 主要性能指标 性能性能指标说明 弹性性能弹性模量 E 当 p E 时 屈服极限 s 材料出现显著的塑性变形强度性能 抗拉强度 b 材料的最大承载能力 延伸率 1 100 ll l 材料拉断时的塑性变形程度塑性性能 截面收缩率 1 100 AA A 材料的塑性变形程度 强度计算 许用应力 材料正常工作容许采用的最高应力 由极限应力除以安全系数求得 11 塑性材料 脆性材料 s s n b b n 其中称为安全系数 且大于 1 sb n n 强度条件 构件工作时的最大工作应力不得超过材料的许用应力 对轴向拉伸 压缩 杆件 3 9 N A 按式 1 4 可进行强度校核 截面设计 确定许克载荷等三类强度计算 2 1 切应力互等定理 受力构件内任意一点两个相互垂直面上 切应力总是成对产生 它们的大小相等 方 向同时垂直指向或者背离两截面交线 且与截面上存在正应力与否无关 2 2 纯剪切 单元体各侧面上只有切应力而无正应力的受力状态 称为纯剪切应力状态 2 3 切应变 切应力作用下 单元体两相互垂直边的直角改变量称为切应变或切应变 用表示 2 4 剪切胡克定律 在材料的比例极限范围内 切应力与切应变成正比 即 3 10 G 式中 G 为材料的切变模量 为材料的又一弹性常数 另两个弹性常数为弹性模量 E 及泊松 比 其数值由实验决定 对各向同性材料 E G 有下列关系 3 11 2 1 E G 2 5 2 切应力计算公式 横截面上某一点切应力大小为 3 12 p p T I 式中为该截面对圆心的极惯性矩 为欲求的点至圆心的距离 p I 圆截面周边上的切应力为 3 13 max t T W 式中称为扭转截面系数 R 为圆截面半径 p t I W R 2 5 3 切应力公式讨论 1 切应力公式 3 12 和式 3 13 适用于材料在线弹性范围内 小变形时的等 圆截面直杆 对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用 其误差在工 程允许范围内 2 极惯性矩和扭转截面系数是截面几何特征量 计算公式见表 3 3 在面积 p I t W 12 不变情况下 材料离散程度高 其值愈大 反映出轴抵抗扭转破坏和变形的能 力愈强 因此 设计空心轴比实心轴更为合理 表 3 3 4 32 p d I 实心圆 外径为 d 3 16 t d W 4 4 1 32 p D Ia 空心圆 外径为 D 内径为 d 4 4 1 16 t D Wa d a D 2 5 4 强度条件 圆轴扭转时 全轴中最大切应力不得超过材料允许极限值 否则将发生破坏 因此 强度 条件为 3 14 对等圆截面直杆 max max t T W max max t T W 3 15 式中为材料的许用切应力 3 1 1 中性层的曲率与弯矩的关系 3 16 1 z M EI 式中 是变形后梁轴线的曲率半径 E 是材料的弹性模量 是横截面对中性轴 Z E I 轴的惯性矩 3 1 2 横截面上各点弯曲正应力计算公式 3 17 Z M y I 式中 M 是横截面上的弯矩 的意义同上 y 是欲求正应力的点到中性轴的距离 Z I 最大正应力出现在距中性轴最远点处 maxmax maxmax zz MM y IW 3 18 式中 称为抗弯截面系数 对于的矩形截面 对于直径为 max z z I W y h b 2 1 6 z Wbh D 的圆形截面 对于内外径之比为的环形截面 3 32 z WD d a D 34 1 32 z WDa 13 若中性轴是横截面的对称轴 则最大拉应力与最大压应力数值相等 若不是对称轴 则最 大拉应力与最大压应力数值不相等 3 2 梁的正应力强度条件 梁的最大工作应力不得超过材料的容许应力 其表达式为 max max z M W 3 19 对于由拉 压强度不等的材料制成的上下不对称截面梁 如 T 字形截面 上下不等边 的工字形截面等 其强度条件应表达为 3 20a max max1lt z M y I 3 20b max max2yc z M y I 式中 分别是材料的容许拉应力和容许压应力 分别是最大拉应力点和最 tc 12 y y 大压应力点距中性轴的距离 3 3 梁的切应力 3 21 z z QS I b 式中 Q 是横截面上的剪力 是距中性轴为 y 的横线与外边界所围面积对中性轴的静矩 z S 是整个横截面对中性轴的惯性矩 b 是距中性轴为 y 处的横截面宽度 z I 3 3 1 矩形截面梁 切应力方向与剪力平行 大小沿截面宽度不变 沿高度呈抛物线分布 切应力计算公式 3 22 2 2 3 6 4 Qh y bh 最大切应力发生在中性轴各点处 max 3 2 Q A 3 3 2 工字形截面梁 切应力主要发生在腹板部分 其合力占总剪力的 95 97 因此截面上的剪力主要由 腹板部分来承担 切应力沿腹板高度的分布亦为二次曲线 计算公式为 3 23 2 222 824 z QBb h Hhy I b 近似计算腹板上的最大切应力 d 为腹板宽度 h1为上下两翼缘内侧距 dh Fs 1 max 3 3 3 圆形截面梁 14 横截面上同一高度各点的切应力汇交于一点 其竖直分量沿截面宽度相等 沿高度呈 抛物线变化 最大切应力发生在中性轴上 其大小为 2 max4 2 4 83 3 64 z z dd Q QSQ dI bA d 3 25 圆环形截面上的切应力分布与圆截面类似 3 4 切应力强度条件 梁的最大工作切应力不得超过材料的许用切应力 即 maxmax max z z QS I b 3 26 式中 是梁上的最大切应力值 是中性轴一侧面积对中性轴的静矩 是 max Q maxz S z I 横截面对中性轴的惯性矩 b 是处截面的宽度 对于等宽度截面 发生在中性轴 max max 上 对于宽度变化的截面 不一定发生在中性轴上 max 4 2 剪切的实用计算 名义切应力 假设切应力沿剪切面是均匀分布的 则名义切应力为 A Q 3 27 剪切强度条件 剪切面上的工作切应力不得超过材料的 许用切应力 即 3 28 A Q 5 2 挤压的实用计算 名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的 则 bs bsbs bs P A 3 29 式中 表示有效挤压面积 即挤压面面积在垂直于挤压力作用线平面上的投影 bs A 当挤压面为平面时为接触面面积 当挤压面为曲面时为设计承压接触面面积在挤压力垂直 面上的 投影面积 挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 3 30 bs bs bs A P 1 变形计算变形计算 圆轴扭转时 任意两个横截面绕轴线相对转动而产生相对扭转角 相距为 l 的两个横 截面的相对扭转角为 15 rad 4 4 dx GI T l P 0 若等截面圆轴两截面之间的扭矩为常数 则上式化为 rad 4 5 P GI Tl 图 4 2 式中 P GI称为圆轴的抗扭刚度 显然 的正负号与扭矩正负号相同 公式 4 4 的适用条件 1 材料在线弹性范围内的等截面圆轴 即 P 2 在长度 l 内 T G 均为常量 当以上参数沿轴线分段变化时 则应分段 P I 计算扭转角 然后求代数和得总扭转角 即 rad n i Pi ii i IG lT 1 4 6 当 T 沿轴线连续变化时 用式 4 4 计算 P I 2 刚度条件刚度条件 扭转的刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角不得超过许可的单位长 max 度扭转角 即 rad m 4 7 max max P GI T 式 4 8 180 max max P GI T m 2 挠曲线的近似微分方程及其积分 挠曲线的近似微分方程及其积分 在分析纯弯曲梁的正应力时 得到弯矩与曲率的关系 EI M 1 对于跨度远大于截面高度的梁 略去剪力对弯曲变形的影响 由上式可得 EI xM x 1 利用平面曲线的曲率公式 并忽略高阶微量 得挠曲线的近似微分方程挠曲线的近似微分方程 即 4 9 EI xM 16 将上式积分一次得转角方程为 4 10 Cdx EI xM 再积分得挠曲线方程 4 11 DCxdxdx EI xM 式中 C D 为积分常数 它们可由梁的边界条件确定 当梁分为若干段积分时 积分常数的确定除需利用边界条件外 还需要利用连续条件 3 梁的刚度条件 梁的刚度条件 限制梁的最大挠度与最大转角不超过规定的许可数值 就得到梁的刚度条刚度条 件 件 即 4 12 max max 3 轴向拉伸或压缩杆件的应变能 轴向拉伸或压缩杆件的应变能 在线弹性范围内 由功能原理得 lFWV 2 1 当杆件的横截面面积 A 轴力 FN为常量时 由胡克定律 可得 EA lF l N 4 14 EA lF V N 2 2 杆单位体积内的应变能称为应变能密度应变能密度 用表示 线弹性范围内 得 V 4 15 2 1 V 4 圆截面直杆扭转应变能 圆截面直杆扭转应变能 在线弹性范围内 由功能原 er MWV 2 1 将与代入上式得 TMe P GI Tl P r GI lT V 2 2 4 16 图 4 5 根据微体内的应变能在数值上等于微体上的内力功 得应变能的密度 r V 4 17 rVr 2 1 5 梁的弯曲应变能 梁的弯曲应变能 在线弹性范围内 纯弯曲时 由功能原理得 e MWV 2 1 将与代入上式得 MMe EI Ml EI lM V 2 2 4 18 17 图 4 6 横力弯曲时 梁横截面上的弯矩沿轴线变化 此时 对于微段梁应用式 4 18 积分得全梁的弯曲应变能 即 4 19 V l EI dxxM V 2 2 2 截面几何性质的定义式列表于下 静 矩惯性矩惯性半径惯性积极惯性矩 A y zdAS A y dAzI 2 A I i y y A z ydAS A z dAyI 2 A I i z z A yz yzdAI A p dApI 2 3 惯性矩的平行移轴公式 AaII C yy 2 AbII C zz 2 静矩静矩 平面图形面积对某坐标轴的一次矩 如图 1 所示 定义式 1 A y zdAS A z ydAS 量纲为长度的三次方 由于均质薄板的重心与平面图形的形心有相同的坐标和 则 C z C y y A C SdAzzA 由此可得薄板重心的坐标 为 C z A S A zdA z y A C 同理有 A S y z C 所以形心坐标 2 A S z y C A S y z C 或 Cy zAS Cz yAS 由式 2 得知 若某坐标轴通过形心轴 则图形对该轴的静矩等于零 即 0 C y 则 反之 若图形对某一轴的静矩等于零 则该轴必0 z S0 C z0 y S 然通过图形的形心 静矩与所选坐标轴有关 其值可能为正 负或零 如一个平面图形是由几个简单平面图形组成 称为组合平面图形 设第 I 块分图形的 面积为 形心坐标为 则其静矩和形心坐标分别为 i A CiCi zy Cii n i z yAS 1 3 Cii n i y zAS 1 18 4 n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论