差分方程在经济学中的应用(应用数学)_第1页
差分方程在经济学中的应用(应用数学)_第2页
差分方程在经济学中的应用(应用数学)_第3页
差分方程在经济学中的应用(应用数学)_第4页
差分方程在经济学中的应用(应用数学)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

I 本科毕业论文 设计 论文题目 差分方程在经济学中的应用 学生姓名 雷晶 学 号 专 业 数学与应用数学 班 级 数学 1002 班 指导老师 舒蕊艳 完成日期 2014 年 5 月 20 日 差分方程在经济学中的应用 内容摘要 本文叙述了研究差分方程的意义和背景 差分方程的定义 常见的解法以及差分方程相关模 型 重点介绍差分方程经济学中的应用模型 筹措教育经费模型 包括问题的提出 模型举例和分 析 提出假设 模型建立 模型求解 结果分析等等步骤对模型进行了更深层次的分析 做了进一 步的推广 本文所介绍的筹措教育经费模型主要研究的是子女的教育费用 假定某家庭从孩子 m 岁起 每 月拿出一部分钱存进银行 用于投资子女的大学教育 并计划 n 年后支出一些 直到孩子大学毕业 全部用完账户中的资金 差分方程的理论研究近十年来发展十分迅速 尤其是在经济领域 帮助人们解决了很多实际问 题 筹措教育经费模型的建立为广大中国家庭子女教育的费用问题提供了明确的解决方法 是差分 方程理论最贴近实际的模型之一 关键词 差分方程 存款模型 经济增长模型 筹措教育经费模型 I The Application of Differential Equations in Economics Abstract This paper is about the significance background and definition of differential equations It also describes the common solutions and some related models of differential euqations The paper focuses on the differential equations in economics model raising educational funds model which includes proposing questions the model for example and analysis putting forword the hypothesis building and solving the model analysing the result and so on And this paper makes a deeper analysing of the model and does the futher promotion The main aspect of the raising educational funds model in this paper is children s education expenses Here comes the hypothesis assuming that the family puts some money in the bank for investment in their children s college education from their children s m years old and plans to spend some after n years until the children graduated from college run out of all the funds in the account Researching on the theory of differential equations in past decade developes very quickly especially in the economic field It helps people a lot in solving many practical problems The building of raising educational funds model which is one of the most close model to reality provides a clear solution to the cost of children s education for the majority of Chinese family Key word Differential equations Deposit model Economic gain model Raising educational funds model II 目 录 一 绪论 1 1 研究差分方程在经济学中的应用的目的意义 1 2 研究背景 2 二 研究的理论基础 2 1 差分 2 二 差分方程 3 三 差分方程的解 4 四 特征根法 4 三 差分方程的经济应用模型简介 5 一 贷款模型 5 二 存款模型 6 三 乘数 加速数模型 7 四 哈罗德 多马经济增长模型 10 五 投入产出模型 11 六 筹措教育经费模型 12 4 总结 14 参考文献 16 0 序言 数学这一学科从建立到现在 发展迅速 在人们的生活中也得到了越来越多的应用 人们把数学 理论与生活实际相结合 这样的做法不仅解决了实际问题 也更加丰富了数学理论 差分方程是数学 知识应用最广泛的部分之一 它在经济领域中的应用效果最为显著 本文先描述了差分方程的理论 然后对应用广泛的几个差分方程经济模型做了简单介绍 最后 重点介绍了筹措教育经费模型 这是差分方程在经济领域最贴近实际生活的一个模型之一 从问题 的描述出发 到模型建立 求解 最后对结果进行了分析和推广 研究差分方程在经济学中的应用 不仅能帮助解决生活中的经济问题 反过来更能进一步丰富 数学理论 所以 研究差分方程的应用 在实际生活当中具有重要的意义 一 绪论 一 研究差分方程在经济学中的应用的目的和意义 数学这一基础性学科在不断发展 在现代经济学中所起的作用也日益突出 数学是一切学科的 基础 经济领域也不例外 要发展经济就要研究经济理论 掌握经济规律 预测经济发展的趋势 这些 都离不开数学这一工具 经济学中的变量有三种类型 自变量和因变量 存量和流量 内生变量和 外生变量 经济模型是研究经济学领域中的经济变量之间的关系的 在其中加入数学元素 使得问题 的描述简洁清楚 语言严密精确 在研究过程中通过参考已有的数学模型或数学定理有利于新结果 的产生 可得到精准的结论 经济模型 1 是研究分析经济变量关系的一个重要工具 连接了经济理论 和经济现实 也让数学理论得到更加广泛的应用 经济数学模型具体来说 是在经济理论的指导下 通过建立数学模型的这个过程 把研究对象简单化 转化为本质同一的对象 使研究对象具有代表性 以 一代全 实际操作起来更加方便 从而实现对经济现实的简化 故对于变量数量繁多 而且变量之间 的关系复杂多变的经济数量关系进行分析研究 经济数学模型不可或缺 在经济数学模型中 差分方程的应用非常广泛 人们建立了一系列以差分方程理论为核心的一 系经济类数学模型 如市场经济中的蛛网模型 养老保险模型以及筹措教育经费模型等等 相应模 型的建立也就解决了相应的经济学中的问题 如市场经济中的蛛网模型的研究就是基于自由竞争的 市场经济中的供需变化与价格变化的循环现象 筹措教育经费模型则是站在一个理性角度 定量研 究某家庭投资子女教育所需的费用 其实 总结一下 不难发现 以上的模型都是关于离散变量的规 律 性质问题 只要判断出要研究的问题具有这类共同点 就可以考虑用差分方程模型来分析求解 问题 差分方程其实与微分方程有些许相似 差分方程是含有未知函数及其差分的函数方程 微分方 程是含有未知函数的导数的方程 差分方程是微分方程的离散化 差分方程反映的是离散变量的取 1 值规律 整个模型研究过程是通过建立离散变量取值所满足的平衡关系 从而建立起差分方程 建立 差分方程模型 不仅可以从定性角度为社会问题的解决提供思路 还从定量的角度解决了实际问题 在经济学中 差分方程的应用使得实证研究更加系统化 规范化 精确的数学方法让广大研究者最 大程度地汲取有用的信息 得到定量性结论 在得到结论的同时 也方便对未来的经济形势和发展情 况作出较为精确预测 这对于个人的理财和国家的经济发展无疑起到了非常重大的作用 举个例子 市场经济中的蛛网模型主要是研究在自由市场上的一种现象 商品的供给大于需求时 销售不畅会 导致价格的大幅下跌 而价格的下降又会使得商品的供给量下降 因此价格又会上升 如果没有干预 会 如此的往复 人们利用差分方程的知识对此过程进行研究 又发现在图像中 商品产量和价格的图形 轨迹类似于蜘蛛网状 于是便有了差分方程的蛛网模型的诞生 对于政府来说 也会更加方便 便于 及时地进行经济干预 中国的社会主义市场经济体制强调的是以市场和计划两种手段来调配社会资 源 市场为主 计划为辅 蛛网模型的建立 把市场调配资源的整个过程体现了出来 同时也让政府可 以更有计划性 更有目的性地来干预经济 经济调控的效果也会更好 所以 研究差分方程 对于数 学理论的发展和实际生活都具有十分重大的意义 二 研究背景 应用差分方程的知识 建立经济模型 解决经济学的问题是要针对目标问题 确定离散变量 根 据实际 建立离散变量所满足的平衡关系式 从而建立差分方程 通过求出方程的解和对解的分析 把握这个离散变量变化的规律 并进一步结合其他的分析 得出原问题的解 差分方程的研究历史比较短暂 真正开始于上个世纪 90 年代 发展迅速 且成果显著 在国内外 一直都是数学学者们的研究热点 在国内 很多学者也在这一领域辛勤工作着 怀化学院的数学系主 任魏耿平就是代表人物之一 他的论文发表在国内外许多著名的期刊杂志上 如美国的 SCI 源刊 国内的 数学学报 等 在国外 随着差分方程理论的快速发展 国际上出现了一种专业性的差分方 程的期刊 它的名称叫做 journal of difference equations and applications 能在这样一个国际性的期刊 上发表学术成果 对个人的研究成果是一种很大的肯定 同时对数学学科的发展是具有非常大的意 义的 这一专业期刊杂志的出现更加推动了差分方程理论在竞争中的不断发展 以及差分方程在实 际中应用的进程 差分方程众多优秀的研究成果也有了展示的平台 如今 随着人们对知识产权的重视程度的提高 中国国内的学术氛围更加浓厚 个人对于这方面 的保护意识也越来越强 这样越来越好的氛围有利于国内各领域内的学者们的研究工作的进行 也 会推进数学理论的进程 在这样一个良好的气氛之下 相信差分方程理论的发展会越快越好 同时它 对中国经济的繁荣发展也会起到更加强大的推动作用和理论指导作用 二 研究的理论基础 一 差分 2 2 设定义在整数集上的函数 nfy 2 1 0 1 2 n 则函数的一阶差分定义为 nfyn nfnfyyy nnn 1 1 函数的二阶差分定义为一阶差分的差分 即 nfyn n y 2 nnnn yyyy 1 2 由差分四则运算法则之中的 可得 nnnn zyzy nnnnnn yyyyyy 121 2 2 以此类推 阶差分就可以定义为阶差分的差分 即 k1 k 3 2 1 0 1 1 1 kycyyy ikn i k k i i n k n k n k 其中 iki k ci k 例 1 设 求和 nnyn25 2 n y n y 2 解 710251215 2 2 nnnnnyn 107107110 2 nnyy nn 二 差分方程 2 定义 1 含有未知函数及其差分的函数方程成为差分方程 n y 2 nn yy 形式 0 n 2 n m nnn yyyyF 定义 2 含有未知函数两个或两个以上的函数值的等式 称为常差分方程 1 nn yy 形式 0 1 knnn yyynF 在差分方程出现的未知函数下标的最大差称为该差分方程的阶 根据定义 阶差分方程的一k 般形式为 0 1 knnn yyynF 3 其中 是自变量 是未知函数 n n y 例如 方程是二阶差分方程 注意 方程是一阶差 n nnn yyy232 12 2 12 32nyy nn 分方程 三 差分方程的解 5 如果将函数代入差分方程后 使其称为恒等式 则称此函数该差分方程的解 若差分方 ny 程的解中含有任意常数 且所含独立的任意常数的个数与差分方程的阶数相同 则称这样的解为该 差分方程的通解 由于通解中含有任意常数 所以在应用时 还需要确定这些常数的条件 这种条件 称为定解条件 由定解条件确定了通解中的所有任意常数后所得到的解称为特解 对阶差分方程 k 常见的定解条件是初始条件 111100 kk ayayay 其中 都是已知常数 110 k aaa 例 2 验证是差分方程的通解 nn n ncy332 n nn nyy32 1 解 将代入差分方程中 得 nn n ncy332 左边 右边 nnnnn nncnc33322322 11 等式成立 故是所给差分方程的解 又因为其中含有一个任意常数 且给定的差 nn n ncy332 分方程是一阶方程 所以 此解为通解 四 特征根法 5 一阶常系数齐次线性差分方程的一般形式如下 2 0 0 1 aayy xx 1 这类方程的解法通常有两种 迭代法和特征根法 在这里介绍的是在差分方程模型中经常用到的特 征根法 原一阶常系数齐次线性差分方程 等价于 可以看出的0 1 xx ayy 01 xx yay x y 形式一定是某个指数函数 于是 假设 代入方程 可得 0 x x y 2 0 1 xx a 2 称方程 2 2 为齐次方程 2 1 的特征方程 解之得 a 是特征方程的根 简称特征根 于是是齐次方程 2 1 的一个解 从而有 xay 为任意常数 x x acy c 是齐次方程的通解 4 例 3 求方程的通解 02 1 xx yy 解 原方程的特征方程为 02 解之得 2 于是 原方程的通解为 x cy2 三 差分方程的经济应用模型简介 差分方程模型在解决实际问题是 一般步骤如下 第一步 先要检验变量是否符合差分方程的 理论条件 并进一步分析实际问题 设定好实际问题中的未知函数 建立差分方程 提出初始条件 第 二步 先求解所建立的方程的通解 再根据之前设定的初始条件求出特解 第三步 用所得出的解给 实际问题一个答复 并结合实际进行分析 在经济学中的差分方程模型很多 下面简单介绍几个差分方程应用较广泛的经济模型 有与个 人日常生活中理财相关的 也有与国家的经济增长相关的 一 贷款模型 贷款这是老百姓生活中常见的一种现象 现在 不管是买房 买车 甚至是大学教育都已经开始 流行贷款 买房 买车是一个人的一生中的重头消费项 在存款不足的情况下 可以帮助实现自己的 房子 车子梦 一般是先支付部分款项 再通过银行贷款付清余额 首先以买房为例介绍贷款模型 假设某房屋总价为元 先付首付款后便可入住 剩下的可以通a 过银行贷款来付清 年利率为 需要年付清 利用差分方程的知识就可以计算出平均每月需要付rn 多少钱 以及总共需要付的利息 具体求解的过程如下 实际在买房时 所需的首付款是房款全额的 40 60 不等 假设首付款为房款全额的 40 贷 款 总额为元 假设每月应付元 总共需要支付的利息为元 月利率为 即得到 a 5 3 xI 12 r 第一个月的应付利息为 205 3 12 1 ra a r y 第二个月的应付利息为 1212 1 125 3 112 rx y rr yxay 5 由此类推 可以得到 1212 1 1 rx y r y tt 上式是一个一阶常系数非齐次线性差分方程 先求其对应的齐次方程 0 12 1 1 tt y r y 的通解 再求原方程的一个特解 相加后即可求得原方程的通解 最后 就可以计算出每月需要支付 的钱 即 2 1 12 1 1212 1 5 3 12 12 n n r rr a x 3 总共需要支付的利息为 2 a r rr a nI n n 5 3 1 12 1 1212 1 5 3 12 12 12 4 如下表 表 2 1 是中国人民银行最新调整后的金融机构人民币贷款基准利率表 一般房贷或车贷都会在五年以上 所以采用 6 55 的贷款利率 假设现在某人要买一栋 全款为一百万元 贷款 60 万 在 10 年内还清 由 2 3 和 2 4 式 每月应支付的金额为 69 6912 x 总共所需支付的利息为 47 829523 I 现实生活中 个人买房的实际情况不同 房子的具体地段 户型 大小面积 楼层等等有差异 所需支付的首付款数额也必然不同 在了解了这个模型后 只需带入相应字母所代表的数据 并相应 地代入首付款金额 就可以很方便地计算出贷款的利息等数据 个人在还款的同时 心里也会有个底 二 存款模型 金融机构人民币贷款基准利率2010 07 06 六个月以内 含六个月 5 60 六个月至一年 含一年 6 00 一年至三年 含三年 6 15 三年至五年 含五年 6 40 五年以上6 55 6 存款 同样也是生活中的一件平常的事 但其中也是有很多的数学知识的 掌握了 就可以大致 了解存款的利息 更容易把握存钱的时机 也可以更好地树立理财的观念 存款是中国人比较传统的一种理财方式 因为银行存款利率的变化 如果想要获得更好的收益 就要掌握一定的数学知识 这样才能更准确地判断存款时机 获得更好地收益 先用字母代替具体数字 假设为最初存入银行的资金总额 为 时期的存款总额 为存款 0 s t str 利率 按年复利计息 就可以得到与之间的关系 得到一个一阶常系数齐次线性方程 t sr 2 1 0 1 1 tsrrsss tttt 求解方程 原方程的特征方程为 01 r 解之得 r 1 所以 原差分方程的通解如下 0 1scrcs t t 即 时期取款所获取的收益为 t t t rss 1 0 如果要存款来获取收益 可以通过 2 5 式来得出最后的收益情况 如果在生活中需要贷款 那么就可以利用 2 3 2 4 两个式子大致计算出每月所需支付的资金 以及所需支付的全部 利息 不会发生在银行贷款时理不清楚的现象 也有利于自己管理自己的财产 根据中国人民银行最新发布的金融机构人民币存款基准利率调整表 表 2 2 活期存款利率为 0 35 若最初存进银行的金额是元 第 3 年的收益为 10000 0 S3 t 3 S 37 101050035 0 110000 3 3 S 按照最长的 5 年的定期存款利率 4 75 来计算 假设最初的存款 第 5 年的10000 0 S5 t 收益为 5 S 60 126110475 0 110000 5 5 S 存款作为中国老百姓传统的理财方式 虽然已经不多见了 但平时生活中留有存款 也可以应对 金融机构人民币存款基准利率2012 07 06 活期存款0 35 三个月2 60 半年2 80 一年3 00 二年3 75 三年4 25 五年4 75 7 老人生病等突发的状况 平时留有一定数额的存款还是有不少作用的 对存款利率的了解是很重要 的 三 乘数 加速数模型 4 差分方程在经济学中的应用除了与实际生活联系密切的模型之外 也有关于宏观经济方面的模 型 比如经济增长模型等 对于一个国家来说 经济的增长十分重要 持续稳定增长的经济会给人民 带来更多的福祉 所以 第三个模型介绍的是由萨缪尔森提出的乘数 加速数模型 它是属于典型的凯恩斯主义 在介绍乘数 加速数模型之前 首先应明确本模型中所涉及的两个经济原理 乘数原理和加速原理 乘数原理说明了投资变动对国民收入变动的影响 而加速原理说明了国民收入的变动对投资变动的 影响 乘数 加速数模型就是二者结合起来对经济周期的影响 假设为资本存量 为产量水平 代表资本 产量比率 有 KYv vYK 一般情况下 资本 产量比 时期的和的关系可表示为 1 v 1 tKY 11 tt vYK 从时期到 时期 资本存量的增加量是 资本的增加需要投资的增加 记是 时期的1 tt 1 tt KK t It 投资净额 则有 1 ttt KKI 由 可以推导出 11 tt vKK 2 11 ttttt YYvYvYI 6 上式表明 在资本 产量的比率保持不变的情况下 时期的净投资额决定于到 时期的产量t t I1 tt 的变动量 被称为加速数 v 由于生产过程中难以避免机器的磨损等 就会导致重置投资 将其视为折旧 与净投资额组成了 总投资 则 2 6 式就变成了 时期的投资总额时期的折旧 t tYYv tt 1 所以 可以得到产量水平与投资支出之间的关系 加速数为大于 1 资本存量的增加必须要超过产 量的增加 前提是资本存量充分利用 萨缪尔森的乘数 加速数模型基本方程如下 2 tttt GICY 7 2 10 1 tt YC 8 2 0 1 vCCvI ttt 9 8 其中 是国民收入 是消费额 是政府的购买 假定政府购买是常数 t Y t C t G t GGGt 求解方程 将 2 8 2 9 代入 2 7 式中 可得 ttttt GCCvYY 11 化简后 有 GvYYvY ttt 12 1 得出特征方程 01 2 vv 求解特征方程 是一个一元二次方程 由 vvacb 414 2 22 因为值有可能大于 0 等于 0 或小于 0 故对应的不同取值 解有三种情况 故 化简之后的方程 ttttt GCCvYY 11 通解为 t Y0 1 2211 G CC tt 0 1 21 G tCC t 0 1 sincos 21 G tCtCr t 其中 1 arctan 1 2 1 1 2 1 41 2 1 2 2 v vrvv vvv 由此得到国民收入的计算公式 代入原方程就可以计算出本期消费 本期私人投资 t Y t C t I 假设边际消费倾向 加速数 政府每期开支相同 从上期国民收入中来5 0 1 v亿1 t G 的本期消费为零 那么 投资当然也是零 故 代入数据后 总结如下表 2 3 时期 t 政府购买 t g 本期消费 t C 本期私人投资 t I 国民收入总 额 t Y 变动趋势 11 000 000 001 00 21 000 500 502 00复苏 31 001 000 502 50繁荣 9 41 001 250 252 50繁荣 51 001 250 002 25衰退 61 001 125 0 1252 00衰退 71 001 00 0 1251 875萧条 81 000 9375 0 06251 875萧条 91 000 93750 001 9375复苏 101 000 968750 031252 00复苏 111 001 000 031252 03125繁荣 121 001 0 2 03125繁荣 131 001 0 002 衰退 141 001 0 2 00衰退 此模型模型集合了两种经济原理 对经济周期的分析更注重外部的因素 投资影响收入和消费 消费和收入反过来也会影响投资 从而形成经济扩张或收缩的局面 这是西方学者的对经济波动的 一种解释 政府对经济进行干预 就可以改变或缓和经济波动 采取适当政策刺激投资 鼓励提高劳 动生产效率 就可以提高加速数 就可缓和经济萧条 四 哈罗德 多马经济增长模型 6 宏观经济中的差分方程模型除了上述的萨缪尔森的乘数 加速数模型 还有另外一种经济增长 模型 就是由哈罗德和多马共同提出的哈罗德 多马经济增长模型 同样也是凯恩斯理论的典型 这 个模型与乘数 加速数模型的结论不同 它认为 经济的增长是不稳定的 具体的模型描述如下 假设 为 时期的储蓄额 为 时期的国民收入 则是 时期的投资额 边际储蓄倾向用 t St t Yt t It 表示 与乘数 加速数模型一样 假定加速数保持不变 都是常数 s10 svvs 哈罗德 多马经济增长模型的方程如下 1 0 1 ssYS tt 0 1 vYYvI ttt tt IS 化简方程 得到 0 11 ttt sYvYvY 可得到特征方程 0 svv 解之得 v s 1 故原方程的通解 10 t t v s cY 1 其中 是常数 指的就是要保证所有储蓄转化为投资的经济增长率 经济学中称为保证增长率 c v s 保证增长率中 是加速数 一般是假定不变的 是边际储蓄倾向 表示的是国民收入每增加一 v s vs 个单位 储蓄会增加的程度 依据哈罗德 多马经济增长模型 如果可以保证 时期的储蓄额和投资保持平衡 储蓄额可以得t 到充分的利用 那么国民收入就会按照保证增长率增长 但在实际中 储蓄与投资之间的完全转化 v s 是难以实现的 因此会造成经济的增长不稳定的状况 就会得到相应的结论 五 投入产出模型 8 如果说上述的两个经济增长模型是对经济增长速度的深刻阐述 那么最后要介绍的投入产出模 型 则是更进一步的对结果的探究 投入产出模型 是一种定量分析并衡量经济效益的模型 可以为国家经济政策的制定提供依据 从事某一项经济活动之前会有成本的投入 如人力 财力等 经济活动结束后会有一定的收益 投入 产出模型的提出 就是将投入与产出量化 用数学方法来进行宏观经济的核算 并经过合理的分析后 采 取一定的措施 调控成本 提高国家经济效益 此模型诞生在美国 由著名经济学家列昂捷夫提出 是国民经济核算的重要组成之一 我们在这 里介绍的是静态投入产出模型 是对一个时期的经济活动的计划投入 计划收入以及对应的实际收 入进行计算 具体如下 假设 时期初 国家计划投资额 对应的实际投资 计划消费 对应实际的消费是 t t I t I t C t C 计划的收入 对应实际的收入是 假定计划消费可以实现 且计划投资与实际投资相等 则有 t Y t Y tttt CCII 也有 2 ttttt YCICI 10 实际的收入是这样计算的 假定为实际的储蓄额 则有 t Y t S 2 ttt CYS 11 由 2 10 和 2 11 两式可得 tttt SCYI 11 即 实际的投资额与实际储蓄额相等 但计划储蓄与实际储蓄是不等的 所以 计划投资额与计划储 蓄不等 一般本期计划消费是根据上一期的收入和消费额指定的 上期的收入与本期的计划消费是有函 数关系的 假定计划消费是上期收入的一次线性函数 故有 kaYC tt 1 其中 是边际消费倾向 一般情况下 是常数 代表基本生活消费 将上式代入 2 10 a10 ak 中 可以得到如下的一阶常系数线性差分方程 ttt YIkaY 1 用特征根法解方程 原差分方程的特征方程为 0 t Ik 解之得 t Ik 故 原差分方程的通解为 t tt IkcY 若已知基本的消费和计划投资 前提假定计划投资与实际投资相等 就可以计算出实际的收入 差分方程的应用远远不止上述的这些日常生活中的理财行为 以及宏观经济上的应用 它的应 用也远不止经济学这一个领域 它对我们生活的影响可大可小 可以帮助我们更好地规划生活 这也 体现了以差分方程为代表的数学理论知识 在实践中的巨大作用 六 筹措教育经费模型 1 问题描述 中国整体的国民收入水平在改革开放之后大大提高 但由于传统观念的影响 老百姓的理财意 识并不强 一般家庭的消费支出并不高 人们总是习惯于把钱存入银行或信用社 但有一个共同的大 的消费支出是不可避免的 就是子女的教育经费支出 在一个小孩上大学之前 从小学到高中是义务 教育阶段 国家会承担多数的教育费用 这时候家庭负担较轻 不会造成经济压力 但到了大学阶段 学费数额一下子上升 一般的中国家庭经济压力就会加大 为了解决老百姓的这个问题 国家也有了 很多的优惠政策 如生源地助学贷款 学校方面所提供的助学贷款 贫困助学金等 对此 还是有很 多父母不愿孩子在进入社会之初就背负经济上的压力 想要让孩子轻装上阵 于是就想有计划地存 款 为孩子以后的高等教育做准备 那么 假如某家庭从孩子出生时就开始准备存款 每个月从工资中拿出一部分资金 存入银行账 户 用于投资子女以后的高等教育 并计划在 20 年后开始从该账户中每月支取固定的数额元 直b 到子女完成学业 并且在 5 年内要用完全部资金 要实现这个投资目标 20 年后共要筹措多少资金 12 每月要向银行存入多少钱 2 问题分析 此问题可以分成两个阶段 第一阶段是在前面 20 年 每月向银行存入一笔数额固定的资金 第 二阶段 是在 20 年后将所有资金用于子女的教育 每月支取元 因为大学的学制一般是 4 年 少数b 专业如机械类 学制为五年 所以假定要在 5 年内用完该账户上的资金 3 建立模型 首先 假设从一开始到 20 年内总共要筹措元资金 第个月向银行存款账户存入了元 每xn n I 月存入资金元 同时 设 20 年后第个月银行账户里有元 假设月利率为 an n Sr 所以 采用逆向思维 从该账户设立 20 年后开始 每月从该账户支取固定数额元 且 5 年内用b 完 账户里的钱开始逐年递减 则关于的差分方程为 n S bSrS nn 1 因为是 5 年内取完前 20 年存入的元 共有 120 个月的时间 故 x0 600 SxS 在已知月利率和每月支取金额的前提下 就可以计算出前 20 年总共存款的数额 现暂时继rb 续用表示 以向前推算每月应该存款的金额 xa 从开始存钱到 20 年内 满足的差分方程为 n I aIrI nn 1 因为在银行存钱的时间长度为 20 年 共 240 个月的时间 故 xII 2400 0 若在具体的月利率下 已知每月支取具体的存款金额 则可计算出最初每月应该在银行账户中 存款的金额 4 模型求解 若某家庭是在月利率为的情况下开始存款的 并且假设 20 年内利率保持不变 20 年后每 5 0 月支取的金额为 1000 元 可得差分方程 1000005 1 1 nn SS 用特征根法来求解 原方程的特征方程为 0005 1 解之得 005 1 故 方程的通解为 200000005 1 cS n n 由 可列出 xSS 060 0 200000 0200000005 1 60 xc c 解之得 54 51725 x 13 同样用特征根法可以得出方程的通解 aII nn 005 1 1 acI n n 200005 1 1 由 可以列出 54 51725 0 2400 II 54 51725200005 1 0200 1 240 1 ac ac 解之得 13 78 a 故 综上所述 在月利率保持在时 要达到投资子女高等教育的目标 20 年内总共要筹措 5 0 资金 51725 54 元 每月要存入 78 13 元 5 结果分析 在月利率为 0 5 并且长时间保持不变的情况下 一般家庭要投资子女的教育 从孩子出生后 就要开始存款 为孩子的高等教育做准备 理论上每月只需存 78 13 元 即可满足孩子 20 年后所需 的高等教育费用 但实际上 因为时间的问题 利率是个不确定的变量 而且通货膨胀等因素也会影 响货币的升值或贬值 一般家庭所需存储的金额应该比 78 13 元再多增加一些 其实 国外的学者们对于筹措教育经费的研究比我国早 西方学者的研究集中在教育理念上 Helen F Ladd 等学者提出过一种理念 认为教育经费的投入应遵循公平 充分的原则 另外还有一 种理论 是比较适合中国的国情的 叫做成本分担理论 认为教育经费的来源应当多元化 而筹措教 育经费模型显然更适合中国国情 利用差分方程的知识 通过精准地数学计算 为多数中国家庭投资 子女的教育提供了定量可循的方法 在国内众多传统的家庭里 子女的教育费用问题依然是家庭的几大重要支出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论