2012高考数学一轮复习 第10章第2节 古典概型及几何概型限时作业 文 新课标版_第1页
2012高考数学一轮复习 第10章第2节 古典概型及几何概型限时作业 文 新课标版_第2页
2012高考数学一轮复习 第10章第2节 古典概型及几何概型限时作业 文 新课标版_第3页
2012高考数学一轮复习 第10章第2节 古典概型及几何概型限时作业 文 新课标版_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 20122012 高考数学一轮复习高考数学一轮复习 第第 1010 章第章第 2 2 节节 古典概型及几何概型限时作古典概型及几何概型限时作 业业 文文 新课标版新课标版 一 选择题 本大题共 6 小题 每小题 7 分 共 42 分 1 把一颗骰子投掷两次 观察出现的点数 并记第一次出现的点数为 a 第二次出现的点数 为 b 向量 m m a b n n 1 2 则向量 m m 与向量 n n 垂直的概率是 A B C D 1 6 1 12 1 9 1 18 解析 本题考查古典概型的概率求法 m m n n 0a 2b 所以有 2 1 4 2 6 3 三 种情况 故概率为 31 3612 答案 B 2 2011 届 安徽合肥模拟 有四个游戏盘 将它们水平放稳后 在上面扔一颗玻璃小球 若小球落在阴影部分 则可中奖 小明要想增加中奖机会 应选择的游戏盘是 解析 P A P B P C P D 3 8 2 8 2 6 1 3 因为 P A P C P D P B 所以选择游戏盘 A 中奖的机会最大 答案 A 3 从数字 1 2 3 4 5 中任取两个不同的数字构成一个两位数 则这个两位数大于 40 的 概率是 A B C D 1 5 2 5 3 5 4 5 解析 十位数字有 5 种不同取法 个位数字有 4 种不同取法 所以构成的两位数共有 20 个 其中大于 40 的数的十位数字只能是 4 5 共有 8 个 所以概率为 82 205 答案 B 4 如图 M 是半径为 R 的圆周上一个定点 在圆周上等可能的任取一点 N 连结 MN 则弦 MN 的长度超过R 的概率是 2 A B C D 1 5 1 4 1 3 1 2 解析 本题考查几何概型概率的求解 可用弧长作为几何度量 可知其概率为 2 1 22 R R 答案 D 5 2011 届 山东济南质检 为了测算如图所示的阴影部分的面积 作一个边长为 3 的正方 形将其包含在内 并向正方形内随机投掷 600 个点 已知恰有 200 个点落在阴影部分内 据 此 可估计阴影部分的面积是 A 4 B 3 C 2 D 1 解析 估计阴影部分的面积是 3 2 200 3 600 答案 B 6 某一路口 红灯的时间为 30 秒 黄灯的时间为 5 秒 绿灯的时间为 45 秒 当你到这个路 口时 看到黄灯的概率是 A B C D 1 12 3 8 1 16 5 6 解析 看到黄灯的概率为 51 3045516 答案 C 二 填空题 本大题共 4 小题 每小题 7 分 共 28 分 7 若以连续掷两次骰子分别得到的点数 m n 作为 P 点的坐标 则点 P 落在圆 x2 y2 16 内的 概率是 8 2011 届 福建六校联考 甲 乙两人玩猜数字游戏 先由甲在心中想一个数字 记为 a 再由乙猜甲刚才所想的数字 把乙猜的数字记为 b 且 a b 1 2 3 4 若 a b 1 则 称甲 乙 心有灵犀 现任意找两人玩这个游戏 则他们 心有灵犀 的概率为 解析 本题属于古典概型 利用列举法解决 由题意知 心有灵犀 的事件有以下 10 种 1 1 1 2 2 1 2 2 2 3 3 2 3 3 3 4 4 3 4 4 故 心有灵犀 的概率为 105 4 48 答案 5 8 9 如图 边长为 2a 的正方形及其内切圆 随机向正方形内丢一粒豆子 则豆子落在阴影部 分的概率为 3 解析 本题考查几何概型概率的求解 易知豆子落在阴影部分的概率可用面积的比来度量 即 22 2 2 1 2 4 aa P A a 答案 1 4 10 从长度分别为 2 3 4 5 的四条线段中任意取出三条 则以这三条线段为边可以构成三 角形的概率是 解析 四条线段中任意取出三条有四种情况 依据四条边长可得满足条件的三角形有三种情 况 2 3 4 或 3 4 5 或 2 4 5 故 P 0 75 3 4 答案 0 75 三 解答题 本大题共 2 小题 共 30 分 11 14 分 从 3 2 1 0 5 6 7 这七个数中任取两个数相乘得到的积中 求 1 积为零的概率 2 积为负数的概率 1 2 16 分 已知复数 z x yi x y R R 在复平面上对应的点为 M 1 设集合 P 4 3 2 0 Q 0 1 2 从集合 P 中随机取一个数作为 x 从集合 Q 中随机取 一个数作为 y 求复数 z 为纯虚数的概率 2 设 x 0 3 y 0 4 求点 M 落在不等式组所表示的平面区域内的 x 2y 30 x0 y0 概率 解 1 记 复数 z 为纯虚数 为事件 A 因为组成复数 z 的所有情况共有 12 种 4 4 i 4 2i 3 3 i 3 2i 2 2 i 2 2i 0 i 2i 且每种情况出现的可能性相等 属于古典概型 其中事件 A 包含的基本事件共 2 个 i 2i 4 所以所求事件的概率为 P A 21 126 2 依条件可知 点 M 均匀地分布在平面区域内 03 04 x x y y 该平面区域的图形为图中矩形 OABC 围成的区域 面积为 S 3 4 12 所求事件构成的平面区域为 230 0 0 xy x yx y 其图形如图中的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论