山东省枣庄市峄城区吴林街道中学八年级数学下册 4.8.2 相似多边形的性质教案 北师大版_第1页
山东省枣庄市峄城区吴林街道中学八年级数学下册 4.8.2 相似多边形的性质教案 北师大版_第2页
山东省枣庄市峄城区吴林街道中学八年级数学下册 4.8.2 相似多边形的性质教案 北师大版_第3页
山东省枣庄市峄城区吴林街道中学八年级数学下册 4.8.2 相似多边形的性质教案 北师大版_第4页
山东省枣庄市峄城区吴林街道中学八年级数学下册 4.8.2 相似多边形的性质教案 北师大版_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 4 8 24 8 2 相似多边形的性质教案相似多边形的性质教案 教学目标 教学目标 1 相似多边形的周长比 面积比与相似比的关系 2 相似多边形的周长比 面积比在实际中的应用 3 经历探索相似多边形的性质的过程 培养学生的探索能力 合作意识 4 利用相似多边形的性质解决实际问题 训练学生的运用能力 教学重难点 教学重难点 重点 重点 1 相似多边形的周长比 面积比与相似比关系的推导 2 运用相似多边形的比例关系解决实际问题 难点 难点 相似多边形周长比 面积比与相似比的关系的推导及运用 教法与学法指导 教法与学法指导 引导启发式 通过温故知新 知识迁移 引导学生发现新的结论 通过比较 分析 应用 获得的知识达到理解并掌握的目的 课前准备 课前准备 多媒体课件 教学过程 教学过程 一 一 温故知新 温故知新 引入新课引入新课 师 师 上节课我们学习了相似三角形的有关性质 现在请大家根据图片回答下列内容 投影 1 相似三角形对应边 对应角 2 相似三角形的相似比等于 3 相似三角形对应 的比 对应 的比 对应 的比都等于 学生积极的抢答 生 生 1 相似三角形对应边 成比例 对应角 相等 2 相似三角形的相似比等于 对应边的比 3 相似三角形对应 高 的比 对应 角平分线 的比 对应 中线 的比都等于 相似比 师 师 大家知识点掌握的非常好 那你还会做题吗 投影 1 相似三角形中 对应线段的比都等于相似比 2 2 相似三角形中高的比 中线的比 角平分线的比都等于相似比 3 两个相似三角形对应角平分线的比 1 3 它们的对应高 的比为 1 3 4 两个相似三角形的相似比为 1 3 它们的对应高的比是 5 两个相似三角形的相似比为 2 3 它们的对应中线的比 是 6 两个相似三角形的对应高的比为 3 5 它们的对角平分线的比是 7 两个相似三角形的对应中线的比为 9 16 它们的相似比是 8 两个相似三角形各自的最长边分别是 7cm 5cm 它们的对应高的比是 学生独立思考做题 然后选代表回答 错误由其他同学纠错 生生 1 1 1 相似三角形中 对应线段的比都等于相似比 生生 2 2 2 相似三角形中高的比 中线的比 角平分线的比都等于相似比 生生 3 3 3 两个相似三角形对应角平分线的比 1 3 它们的对应高的比为 1 3 生生 4 4 4 两个相似三角形的相似比为 1 3 它们的对应高的比是 1 3 生生 5 5 5 两个相似三角形的相似比为 2 3 它们的对应中线的比是 2 3 生生 6 6 6 两个相似三角形的对应高的比为 3 5 它们的对角平分线的比是 3 5 生生 7 7 7 两个相似三角形的对应中线的比为 9 16 它们的相似比是 9 16 生生 8 8 8 两个相似三角形各自的最长边分别是 7cm 5cm 它们的对应高的比是 7 5 师 师 大家都会了 相似三角形对应高的比 对 应角平分线的比 对应中线的比都等于 相似比 等性质 那么你知道相似多边形的周长比 面积比与相似比是什么关系 现在我 们一起探究它们之间的关系 教师板书课题 4 8 相似多边形的性质 1 设计意图 设计意图 通过复习既为本节课的新知做准备 又让学生在一个比较熟悉的氛围中接 触学习主题 有利于学生启动思维 二 交流讨论 探索新知二 交流讨论 探索新知 想一想想一想 投影 在上图中 ABC CBA 相似比为 4 3 1 请你写出图中所有成比例的线段 3 2 ABC与 CBA 的周长比是多少 你是怎么做的 3 ABC的面积如何表示 CBA 的面积呢 ABC与 CBA 的面积比是多少 与同伴交流 学生独立思考 然后选两个代表板演 其他同学在下面做题 教师巡视并点拨 解 1 ABC CBA BA AB CB BC CA AC DC CD DB BD DA AD 4 3 2 4 3 的周长 的周长 CBA ABC BA AB CB BC CA AC 4 3 CACBBA ACBCAB l l CBA ABC CACBBA CACBBA 4 3 4 3 4 3 4 3 4 3 CACBBA CACBBA 3 S ABC 2 1 AB CD S A B C 2 1 A B C D 2 4 3 2 1 2 1 DC CD BA AB DCBA CDAB S S CBA ABC 师 师 如果 ABC CBA 相似比为k 那么 ABC与 CBA 的周长比和面积比 分别是多少 由此你能得到什么结论 学生相互交流 教师引导小结 然后选代表回答 相似三角形的周长比等于相似比 面积比等于相似比的平方 相似三角形的周长比等于相似比 面积比等于相似比的平方 师 师 相似多边形是否也具有类似的性质呢 议一议议一议 投影片 如图四边形A1B1C1D1 四边形A2B2C2D2 相似比为k 1 四边形A1B1C1D1与四边形A2B2C2D2的周长比是多少 4 2 连接相应的对角线A1C1 A2C2 所得的 A1B1C1与 A2B2C2相似吗 如果相似 它们的相似各是多少 为什么 3 设 A1B1C1 A1C1D1 A2B2C2 A2C2D2的面积分别是 111 CBA S 222222111 DCACBADCA SSS 那么 222 111 222 111 DCA DCA CBA CBA S S S S 各是多少 4 四边形A1B1C1D1与四边形A2B2C2D2的面积比是多少 如果把四边形换成五边形 那么结论又如何呢 学生独立思考 然后选两个代表板演 其他同学在下面做题 教师巡视并点拨 生 生 解 1 四边形A1B1C1D1 四边形A2B2C2D2 相似比为k 22 11 22 11 22 11 22 11 DA DA DC DC CB CB BA BA k k DADCCBBA DADCCBBA l l DCBA DCBA 22222222 11111111 2222 1111 四边形 四边形 2 A1B1C1 A2B2C2 A1C1D1 A2C2D2 且相似比都为k 四边形A1B1C1D1 四边形A2B2C2D2 22 11 22 11 22 11 22 11 DA DA DC DC CB CB BA BA B1 B2 在 A1 B1C1与 A2B2C2中 22 11 22 11 CB CB BA BA B1 B2 A1B1C1 A2B2C2 22 11 BA BA k 同理可知 A1C1D1 A2C2D2 且相似比为k 3 A1B1C1 A2B2C2 A1C1D1 A2C2D2 2 222 111 222 111 k S S S S DCA DCA CBA CBA 5 4 2222 1111 DCBA DCBA S S 四边形 四边形 2 2 222222 222222 k SS SSk DCACBA DCACBA 引导学生发现 无论是三角形 四边形 还是多边形 都有相同的结论 所以可以推 导出 相似多边形的周长比等于相似比 面积比等于相似比的平方相似多边形的周长比等于相似比 面积比等于相似比的平方 做一做 做一做 投影 下图是某城市地图的一部分 比例尺为 1 100000 1 设法求出图上环形快速路的总长度 并由此求出环形快速路的实际长度 2 估计环形快速路所围成的区域的面积 你是怎样做的 与同伴交流 学生先独立思考 然后小组间交流 教师点拨做题过程 最后找同学口述 解 1 量出图上距离约为 20 cm 则实际长度约为 20 千 米 2 图上区域围成的面积约为 23 7 cm2 根据相似多边 形面积的比等于相似比 1 100000 的平方 则实际区域的面积约为 23 7 平方千米 设计意图 设计意图 学生在相似多边形性质的证明过程中 对性质 已经有了全面的认识 通过上面问题的回答 进一步完善了对相似多边形性质的理解和认 识 在解决问题的过程中 学生们分组进行讨论 各抒己见 畅所欲言 体现学生学习的 主动性 三 学以致用 知识反馈三 学以致用 知识反馈 例例 1 1 如图 2 已知 ABC A B C AB 20cm A B 15cm 且 ABC与 A B C 周长差为 20cm 求 ABC的周长 解 ABC A B C 204 153 ABCAB A B CA B 的周长 的周长 设 A B C 周长为 xcm 则 ABC 周长为 x 20 cm 6 即 204 3 x x 解得 x 60 x 20 80 答 ABC周长为 80cm 牛刀小试 1 如图已知 ABC A B C 它们的周长分别为 60cm 和 72cm 且AB 15cm B C 24cm 求 BC AC A B A C 找两名学生板演 其他同学在练习本上完成 教师巡视学生 并辅导 做完后教师展示出答案 解 ABC A B C 60 72 ABBC A BB C 相似多边形的周长比等于相似比 即 1560 2472 BC A B 例例 2 2 如图 在 ABC中 DE BC DE 8cm BC 12cm 梯形 BCED 的面积为 90 cm2 求 S ADE 师 师 见平行想相似 由DE BC 则可证明 ADE ABC 再由相似三 角形的面积比等于相似比的平方 就能求出面积 解 DE BC ADE ABC AED ACB ADE ABC 22 S8 S12 ADE ABC DE BC A A BCED SSS ABCADE AA梯形 S ADE 72 cm2 趁热打铁 2 平行四边形ABCD中 如果 S AEF 10cm2 AE EB 1 3 求 1 AEF与 CDF的周长的比 2 S CDF 解 1 四边形ABCD是平行四边形 7 AB CD AB CD EAF DCF AEF CDF AEF CDF AEF CDF lAE lCD A A AE EB 1 3 AE AB 1 4 AE CD 1 4 即 1 4 AEF CDF l l A A 2 AEF CDF 22 S1 S4 AEF CDF AE CD A A 2 101 S4 CDF A S CDF 160 cm2 设计意图 设计意图 本环节是在掌握相似多边形性质之后的提高 在例题和练习中 运用相似 多边形的周长比等于相似比 相似三角形的面积比等于相似比的平方求出边长和三角形的 面积 再把面积转化为所需的费用 考察了学生综合运用知识的能力 如果课内因时间无法 做完 可布置学生作为思考题 在课外完成 可检验学生掌握知识的深度 对本节课的内 容进行巩固 四 课堂小结 四 课堂小结 反思提高反思提高 师 师 从今天的课堂中 你学到了哪些知识 掌握了哪些方法 先想一想 再谈谈自己 的收获 生生 1 1 相似三角形周长比等于相似比 相似三角形面积比等于相似比的平方 生生 2 2 相似多边形周长比等于相似比 相似多边形面积比等于相似比的平方 生生 3 3 利用 相似多边形周长比等于相似比 相似多边形面积比等于相似比的平方 解决实际问题 生 生 师师 大家都谈了自己的收获 看来这节课学的不错 下面我们来检测一下 看看哪些 同学应用的最好 继续努力 8 设计意图 设计意图 本环节我鼓励学生畅谈自己学习所得的新知识与个人切身体会 激发学生 的学习兴趣与自信心 对学生今后的数学学习会有很大的帮助 五 快乐套餐 深化提高五 快乐套餐 深化提高 A A 组 组 1 ABC A B C 相似比是 2 3 那么 A B C 与 ABC面积的比是 A 4 9 B 9 4 C 2 3D 3 2 2 将一个五边形改成与它相似的五边形 如果面积扩大为原来的 9 倍 那么周长扩大 为原来的 A 9 倍B 3 倍 C 81 倍 D 18 倍 B B 组 组 3 ABC A B C 相似比是 3 4 ABC的周长是 27 cm 则 A B C 的周 长为 4 两个相似多边形对应边的比为 3 2 小多边形的面积为 32 cm2 那么大多边形的面 积为 5 若两个三角形相似 且它们的最大边分别为 6 cm 和 8 cm 它们的周长之和为 35 cm 则较小的三角形的周长为 C C 组 组 6 如图 ABCD中 AE EB 1 2 且 S AEF 6 cm 1 求 AEF与 CDF的周长比 2 求 CDF的面积 设计意图 设计意图 通过检测纠错 有针对性的对所学知识进行巩固 落实 对学生存在的问 题及时有效的进行反馈 让老师及时 准确的掌握学生的课堂学习效果 为下一节课的学 习做好准备 六 布置作业 课堂延伸六 布置作业 课堂延伸 必做题 必做题 课本第 151 页 习题 4 11 第 1 2 3 题 选做题 选做题 课本第 151 页 习题 4 11 第 4 5 6 题 板书设计板书设计 4 84 8 相似多边形的性质相似多边形的性质 2 2 9 学生板演区学生板演区 想一想 议一议 相似多边形的性质 相似多边形周长比等于 相似比 相似多边形面积比 等于相似比的平方 做一做 例 1 例 2 教学反思教学反思 本课以学生的自主探究为主线 引入新课时从学生身边的熟悉的例子出发 来激发学 生的学习兴趣 在猜想 证明相似三角形和相似多边形的性质时 也遵循学生认知规律 循序渐进 对学生提出的问题 得到的结论充分肯定 同时还加强课内探究 分组讨论等 形式 丰富课堂气氛 激发学生们的求知欲望 学生们的主体地位得到了尊重 课后布置 思考题 学有余力的学生继续挖掘题目资源 提高学习效率 培养学生思维的深刻性 相似三角形和相似多边形的性质这一节是初中阶段的一个难点 也是重点 学生能真 正的理解和熟练的应用它还需要一个过程 课堂上教师作为知识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论