



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用心 爱心 专心1 反证法在几何问题中的应用反证法在几何问题中的应用 反证法是一种非常重要的数学方法 它在几何的应用极为广泛 在平面几何 立体几何 解析 几何都有应用 本文选择几个有代表性的应用 举例加以介绍 一 证明几何量之间的关系 例 1 已知 四边形 ABCD 中 E F 分别是 AD BC 的中点 2 1 CDABEF 求证 CDAB 证明 假设 AB 不平行于 CD 如图 连结 AC 取 AC 的中点 G 连结 EG FG E F G 分别是 AD BC AC 的中点 CDGE CDGE 2 1 ABGF ABGF 2 1 AB 不平行于 CD GE 和 GF 不共线 GE GF EF 组成一个三角形 EFGFGE 但 EFCDABGFGE 2 1 与 矛盾 CDAB 例 2 直线与平面相交于 过点在平面内引直线 PO OO OAOBOC POCPOBPOA 求证 PO 证明 假设 PO 不垂直平面 作并与平面相交于 H 此时 H O 不重合 连结 OH PH 由 P 作于 E 于 F OAPE OBPF 根据三垂线定理可知 OAHE OBHF PO 是公共边 POBPOA POFRtPOERt OFOE 又OHOH OEHRtOFHRt EOHFOH 因此 OH 是的平分线 AOB 同理可证 OH 是的平分线 AOC 但是 OB 和 OC 是两条不重合的直线 OH 不可能同时是和的平分线 产生矛盾 AOB AOC PO 例 3 已知 A B C D 是空间的四个点 AB CD 是异面直线 求证 AC 和 BD 是异面直线 AB C D EF G a O P A BC E F H 用心 爱心 专心2 证明 假设 AC 和 BD 不是异面直线 那么 AC 和 BD 在同一平面内 因此 A C B D 四点在同一平面内 这样 AB CD 就分别有两个点在这个平面内 则 AB CD 在这个平面内 即 AB 和 CD 不是异面直线 这与已知条件产生矛盾 所以 AC 和 BD 是异面直线 上面所举的例子 用直接证法证明都比较困难 尤其是证两条直线是异面直线 常采用反证法 二 证明 唯一性 问题 在几何中需要证明符合某种条件的点 线 面只有一个时 称为 唯一性 问题 例 3 过平面上的点 A 的直线 求证 是唯一的 aa 证明 假设不是唯一的 则过 A 至少还有一条直线 ab b 是相交直线 ab 可以确定一个平面 ab 设和相交于过点 A 的直线 c a b ca cb 这样在平面内 过点 A 就有两条直线垂直于 这与定理产生矛盾 c 所以 是唯一的 a 例 4 试证明 在平面上所有通过点的直线中 至少通过两个有理点 有理点指坐标 0 2 x 均为有理数的点 的直线有一条且只有一条 y 证明 先证存在性 因为直线 显然通过点 且直线至少通过两个有理点 例如它通过0 y 0 2 0 y 和 这说明满足条件的直线有一条 0 0 0 1 再证唯一性 假设除了直线外还存在一条直线 或 通过点 且该直0 ybkxy 0 k0 b 0 2 线通过有理点 A与 B 其中 均为有理数 11 yx 22 yx 1 x 1 y 2 x 2 y 因为直线通过点 所以 于是 且 又直bkxy 0 2 kb2 2 xky0 k 线通过 A与 B两点 11 yx 22 yx 所以 2 11 xky 用心 爱心 专心3 2 xky 得 2121 xxkyy 因为 A B 是两个不同的点 且 所以 0 k 21 xx 21 yy 由 得 且是不等于零的有理数 21 21 xx yy k k 由 得 k y x 1 1 2 此式的左边是无理数 右边是有理数 出现了矛盾 所以 平面上通过点的直线中 至少通过两个有理点的直线只有一条 0 2 综上所述 满足上述条件的直线有一条且只有一条 关于唯一性的问题 在几何中有 在代数 三角等学科中也有 这类题目用直接证法证明相当 困难 因此一般情况下都采用间接证法 即用反证法或同一法证明 用反证法证明有时比同一法更 方便 三 证明不可能问题 几何中有一类问题 要证明某个图形不可能有某种性质或证明具有某种性质的图形不存在 它 们的结论命题都是以否定形式出现的 若用直接证法证明有一定的困难 而它的否定命题则是某个 图形具有某种性质或具有某种性质的图形存在 因此 这类问题非常适宜用反证法 例 5 求证 抛物线没有渐近线 证明 设抛物线的方程是 pxy2 2 0 p 假设抛物有渐近线 渐近线的方程是 易知 都不为 0 因为渐近线与抛物线baxy ab 相切于无穷远点 于是方程组 baxy pxy2 2 2 1 的两组解的倒数都是 0 将 2 代入 1 得 3 0 2 222 bxpabxa 设 是 3 的两个根 由韦达定理 可知 1 x 2 x 用心 爱心 专心4 2 21 2 a pab xx 2 2 21 a b xx 则 4 0 211 2 21 21 21 b pab xx xx xx 5 0 111 2 2 2121 b a xxxx 由 4 5 可推得 0 p 这于假设矛盾 0 p 所以 抛物线没有渐近线 关于不可能问题是几何中最常见也是非常重要的一种类型 由于它的结论是以否定形式出现 采用直接证法有困难 所以这类问题一般都使用反证法加以证明 四 证明 至少存在 或 不多于 问题 在几何中存在一类很特殊的问题 就是证明具有某种性质的图形至少有一个或不多于几个 由 于这类问题能找到直接论证的理论根据很少 用直接证法有一定困难 如果采用反证法 添加了否 定结论这个新的假设 就可以推出更多的结论 容易使命题获证 例 6 已知 四边形 ABCD 中 对角线 AC BD 1 求证 四边形中至少有一条边不小于 2 2 证明 假设四边形的边都小于 由于四边形中至少有一个角不是钝角 这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家能源大庆市红岗区2025秋招半结构化面试模拟30问及答案
- 关于燃放烟花爆竹的横幅标语
- 武威市中石化2025秋招笔试模拟题含答案数智化与信息工程岗
- 2025年甘肃省陇南事业单位招聘在哪查看考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年甘肃酒泉玉门市招聘村级后备干部模拟试卷及答案详解(考点梳理)
- 2025年石嘴山市科技馆公开招聘编外聘用人员模拟试卷附答案详解(典型题)
- 2025年福建省厦门大学化学化工学院乔羽课题组招聘1人模拟试卷及答案详解(必刷)
- 在儿子婚礼上父母致辞
- 增减挂房屋安置协议书6篇
- 2025年新零售时代实体书店图书选题策划与编辑工作研究报告
- 思政家乡课件
- (2024版)小学道德与法治 一年级上册 教学设计
- 《质量管理理论方法与实践》课件-质量管理 ch5 质量功能展开
- 2025年职业培训学校建设项目可行性分析与初步设计方案报告
- 2025年软件架构师专业技术考核试题及答案解析
- 八上语文第9课《天上有颗南仁东星》课件
- 2024年BRCGS包装材料全球标准第7版全套管理手册及程序文件(可编辑)
- 公考公共基础知识培训课件
- 2025年人保非车险考试题及答案
- 铁路工程试验检测员培训考试题土工试题及答案
- 2025年上海银行笔试题库及答案
评论
0/150
提交评论