




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海应用技术学院20092010学年第二学期高等数学(工)2期(终)试卷A课程代码: B122012 学分: 5.5 考试时间: 120 分钟课程序号: 1260、12621286共26个教学班 班级: 学号: 姓名: 我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守考场规则,如有违反将愿接受相应的处理。题 号一二三四总 分应得得分 试卷共6页,请先查看试卷有无缺页,然后答题。一、单项选择题(本大题共7小题,每小题2分,共14分),在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、函数在点处连续是在点处偏导数存在的( D )。(A)充分必要条件(B)充分而非必要条件(C)必要而非充分条件(D)既非充分又非必要条件连续与可导、可微的关系:可微2、设,则( )。(A)2(B)1(C)(D)用公式死做3、设具有一阶连续偏导数,且为某一函数的全微分,则( )。(A)(B)(C)(D)()4、设,是上的连续函数,则( )。(A)(B)(C)(D)计算 先画D,确定X-型或Y-型,或极坐标R型,然后计算(当一型不能计算时换另一型) 1、D为X-型 2、D为Y-型 3、极坐标 常见的区域为 5、已知积分区域是由平面,所围成,把三重积分化为直角坐标系下的三次积分为( )。(A)(B)(C)(D)三重积分 若 则(先一后二)柱面坐标:三重积分先二后一化成二重积分可用极坐标时,即为柱面坐标。6、设是由,三点连成的三角形边界曲线,则( )。(A)(B)(C)(D) 对弧长的曲线积分 BA参数方程若 则 原式=特别的: 7、设为部分抛物面: ,则曲面积分等于( )。(A)(B)(C)(D)对面积的曲面积分当曲面为 特别的:例: 为上半球面二、填空题(本大题共6小题,每小题2分,共12分),请在每小题的空格中填上正确答案。错填、不填均无分。1、已知向量,则与方向相同的单位向量为。向量积: 运算规律:, 几何意义:以为邻边的平行四边形面积2、设,当,时的全微分。微分 可微一定可导,一定连续,反之不一定成立。3、曲线在点处的切线与轴正向所成的倾角为。偏导几何意义 是曲线在的切线关于x轴的斜率。是曲线在的切线关于y轴的斜率。4、设,则。死做5、曲面在点处的切平面方程为。几何应用1、 空间曲线在处的切线为 法平面为2、 空间曲面在处的切平面为 法线为6、设是由,所围成的三角形闭区域,则。计算 先画D,确定X-型或Y-型,或极坐标R型,然后计算(当一型不能计算时换另一型) 1、D为X-型 2、D为Y-型 3、极坐标 常见的区域为 三、计算题(本大题共10小题,每小题6分,共60分)1、求原点在直线:上的投影。平面方程(1)点法式:其中为平面法向量,为平面上一点。(2)一般式:,其中为平面法向量。空间直线方程 (1)对称式(标准式、点向式):其中直线的方向向量为,为直线上一点。(2)两点式:(3)参数式:(4)一般式:,其方向向量注意做法2、设是由方程所确定的隐函数,求。复合函数求导 隐函数求导 若由决定,则 (或两边同时对求导) 若由决定,则 (或两边同时对求偏导)3、设,其中具有一阶连续偏导数,求。复合函数求导 隐函数求导 若由决定,则 (或两边同时对求导) 若由决定,则 (或两边同时对求偏导)4、求函数的极值。极值 求函数的极值1) 求驻点, 2)求, 2) 判定 若,为极值点,A0为极小值;A0为极大值。求函数在条件的极值5、计算二重积分,其中。一、 二重积分1、定义: 性质: 若,则 (主要适用于分段函数) 若则 (二重积分中值定理)(设在闭区域上连续,则在上至少存在一点 使得)二、计算 先画D,确定X-型或Y-型,或极坐标R型,然后计算(当一型不能计算时换另一型) 1、D为X-型 2、D为Y-型 3、极坐标 常见的区域为 6、计算二次积分。同上7、设其中是由曲线与所围成的平面闭区域,求。同上8、设为连续函数,其中为,求。三重积分 若 则(先一后二)柱面坐标:三重积分先二后一化成二重积分可用极坐标时,即为柱面坐标9、计算曲线积分,其中为上半圆周()及轴所围成的平面闭区域的正向边界。对坐标的曲线积分 计算方法一: 若 起点处,终点处 则 原式= 对坐标的曲线积分 起点处,终点处 则 原式=计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。如图:L1L10、计算,其中是上半球面的上侧。对坐标的曲面积分计算方法:=注:在计算曲面积分时,通过适当的添加平面或曲面,是之变成一个封闭曲面上的曲面积分与所添加平面或曲面上的曲面积分之差,从而对前者利用高斯公式。四、应用与证明题(本大题共2小题,每小题7分,共14分)1、求由曲面及所围成的立体的体积。体积 2、已知平面区域,为的正向边界,试证:。对坐标的曲线积分 计算方法一: 若 起点处,终点处 则 原式= 对坐标的曲线积分 起点处,终点处 则 原式=计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁路接触网设备机械强度检测考核试卷
- 资产评估考核试卷
- 稀土金属在航空领域的应用考核试卷
- 岗位能手竞聘汇报
- 急救车知识培训
- 新生儿NICU述职报告
- 广东省深圳市2024-2025学年高一下学期期中考试 数学 PDF版含解析【KS5U 高考】
- 心脏搭桥麻醉临床实践要点
- 麻醉科工作量分析与优化策略
- 房地产区域分化现象解析:2025年投资策略与市场布局优化
- 2025年山东省淄博市桓台县中考二模历史试题
- 含硫(硒)自由基:有机功能分子构建的关键路径与前沿探索
- 祖父房产学位协议书
- 断层解剖学知到智慧树期末考试答案题库2025年内蒙古医科大学
- 2024-2025学年统编版七年级历史下册期末重点简答题100道
- 云南高创人才服务有限公司曲靖分公司招聘笔试题库2025
- 2025年烟台市初中地理学业水平考试试题及答案
- 非遗缠花创新创业
- 第三方转移支付协议
- 矿山测量工培训
- 施工分包商入库管理细则
评论
0/150
提交评论