




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形平行四边形 教学过程教学过程 一 复习 引入新课 提问 1 什么叫做平行四边形 2 平行四边形有哪些性质 3 判定一个四边形是平行四边形的方法有哪些 议一议 一组对边平行且相等的四边形是平行四边形吗 如果是 请你证明它 学生先独立证明 再与同桌交 流 板演 定理 一组对边平行且相等的四边形是平行四边形 2 学习目标 二 能够利用平行四边形的判定定理来判定平行四边形 三 随堂练习 1 证明 对角线互相平分的四边形是平行四边形 2 已知 如图 在 ABCD 中 BF DE 求证 四边形 AFCE 是平行四边形 A A A A A A B B C C D D E E F F 3 已知 如图 BD 是 ABC 的中线 延长 BD 至 E 使得 DE BD 连接 AE CE 求证 BAE BCE B E C A D 四 小结 这节课你的收获是什么 平行四边形的判定定理 两组对边分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 五 布置作业 板书设计 1 平行四边形 平行四边形的判定 平行四边形的判定定理 两组对边分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 1 平行四边形 二 平行四边形 二 教学过程 教学过程 提问 1 说一说平行四边形有那些性质 2 你能写出 1 中的逆命题吗 3 如何证明判别一个四边是平行四边形的方法 性质 性质 1 平行四边形对边相等 平行四边形对边相等 逆命题 两组对边分别相等的四边形是平行四边形 性质 性质 2 平行四边形对角相等 平行四边形对角相等 逆命题 两组对角分别相等的四边形是平行四边形 性质 性质 3 平行四边形两条对角钱互相平分 平行四边形两条对角钱互相平分 逆命题 两条对角钱互相平分的四边形是平行四边形 性质 性质 4 平行四边形两组对边分别平行 平行四边形两组对边分别平行 逆命题 两组对边分别平行的四边形是平行四边形 议一议 一组对边平行且相等的四边形是平行四边形吗 如果是 请你证明它 并与同伴交流 涉及到平行四边形判定的问题 应注意灵活选择不同的判定方法 从边看 有三种判定方法 两组对边分别相等 两组对边分别平行 一组对边平行且相等 从角看 两组对角分别相等 从对角线看 对角线互相平分 课堂小结 课堂小结 在证明中 离不开线段的平行 相等 或角的相等关系 因此 除题目中已给出的线段平行 相等或角相 等的条件外 都要通过三角形全等得到所需要的判定条件 总之 平行四边形的问题通常要转化成三角形 问题来解决 1 平行四边形 二 平行四边形 二 教学过程 教学过程 提问 请同学们思考 将任意一个三角形分成四个全等的三角形 你是如何切问的 定义 连接三角形两边中点的线段叫做三角形的中位线 想一想 三角形的中位线与第三边有怎样的关系 能证明你的猜想吗 定理 三角形的中位线平行于第三边 且等于第三边的一半 定理 三角形的中位线平行于第三边 且等于第三边的一半 利用三角形中位线定理及三角形全等的 SSS 公理就可以比较容易地证明四个小三角形全等 做一做 课堂小结 课堂小结 通常可利用中位线定理添加辅助线可以构成几个基本图形 矩形矩形 由平行四边形的特点 由学生自己说明矩形 正方形由平行四边形的特点 由学生自己说明矩形 正方形 教学过程 教学过程 提问 1 你了解哪些特殊的平行四边形 2 这些特殊的平行四边形与平行四边形有哪些关系 3 能用一张图来表示它们之间的关系吗 提问 平行四边形与矩形 菱形 正方形的关系 1 矩形具有平行四边形的一切性质 2 矩形四个角都是直角 3 矩形的对角线相等 定理矩形的四个角都是直角 定理矩形的对角钱相等 课堂小结 课堂小结 1 矩形具有平行四边形的一切性质 2 矩形四个角都是直角 3 矩形的对角线相等 当平行四边形的一个角为直角 一组邻边相等时 图形为正方形 正方形既是平行四边形的特例 又是矩 形和菱形的特例 正方形具有平行四边形 矩形 菱形的所有性质 它既是中心对称图形 又是被对称图 形 正方形除具有平行四边形的一切性质外 还具有如下性质 四个角都是直角 四条边都相等 两条对 角线相等且互相垂直平分 每条对角线平分一组对角 判定一个四边形是正方形的思路 2 特殊平行四边形 二 特殊平行四边形 二 菱形菱形 教学过程 教学过程 什么是菱形 什么是菱形 提问 菱形有哪些性质 你能证明吗 思路点拨 利用菱形的定义以及平行四边形的性质容易证明第一个定理 证明第二个定理主要用到 平行四边形的对角线互相平分 和等腰三角形 三线合一 的性质 想一想 怎样判别一个平行四边形是菱形 请证明你的结论 证明时要用到 平行四边形的对角线互相平分 线段垂直平分线上的点到这条线段的两个端点的距离相 等 定理 菱形的四条边都相等 定理 菱形的四条边都相等 定理 菱形的对角钱互相垂直 并且每条对角线平分一组对角 定理 菱形的对角钱互相垂直 并且每条对角线平分一组对角 定理 对角线互相垂直的平行四边形是菱形 定理 对角线互相垂直的平行四边形是菱形 例 2 如图 四边形 ABCD 是边长为 13cm 的菱形 其中对角线 BD 长 10cm 求 1 对角线 AC 的长度 2 菱形 ABCD 的面积 总结 总结 菱形具有平行四边形的所有性质 菱形的四边相等 对角线互相垂直 并且每条对 角线平分一组对角 判定一个四边形是菱形的方法有 4 种 课堂小结 课堂小结 对角线互相垂直的平行四边形是菱形 有一条对角线平分一组对角的平行四边形是菱形 梯形梯形 教学过程教学过程 一 创设情景 引入课题 还记得我们探索过的平行四边形的性质及判别条件吗 你能用公里和已有的定理证明它们吗 二 师生互动 探索新知 一 平行四边形的性质 1 定理 平行四边形的对边相等 分析 命题的题设和结论是什么 如何借助于已有的知识来证明它 可以借助于三角形的全等来证明 通过添加辅助线 将四边形的问题转化为三角形来证明 证明 略 思考 由上面的证明你还可以得到什么结论 学生讨论 教师总结 得到平行四边形的性质 2 2 定理 平行四边形的对角相等 证明 略 二 等腰梯形的性质 例 等腰梯形在同一底上的两个底角相等等腰梯形在同一底上的两个底角相等 提示 我们证明过 等腰三角形的两个底角相等 如果可以将 B 与 C 转化为等腰三角形的两个底角 那么就容易证明了 为此 可以将 AB 平移到 DE 的位置 证明 略 点评 这是一个将代证问题转化为一个已证问题的例子 体现了数学中的转化思想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电焊工知识培训课件
- 北交大四六级考试真题及答案
- 推拿手法学考试题及答案
- 起重机械作业人员考试题库及答案
- 电焊培训理论知识直播内容课件
- 宝鸡社区事业考试题库及答案
- 电流的强弱教学课件
- 2025年基础地质勘查服务项目申请报告模板
- 高原防护课件
- 建筑机器人应用技术标准
- DB32-T 4334-2022 薄壳山核桃郁闭园改造技术规程
- 农办主任履行职责工作(2篇)
- 2025年中国维生素C咀嚼片市场供需格局及未来发展趋势报告
- 规则之下方有自由课件-高一上学期行为常规主题班会
- 广东省汕头市金平区2021-2022学年八年级下学期期末英语卷
- 物流行业固废处理方案
- 云南省第二十一届职工职业技能大赛机器人系统运维员竞赛考试题库(含答案)
- 申请报建户外货梯的申请书
- DB S63-0011-2021食品安全地方标准 黑果枸杞中花青素含量的测定
- 《如何说孩子才会听怎么听孩子才肯说》读书分享
- 2022年贵州省注册安全工程师考试题库合集(含各科真题和典型题)
评论
0/150
提交评论