全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简支梁横向振动的固有频率及振型函数的推导简支梁横向振动的固有频率及振型函数的推导 一 等截面细直梁的横向振动一 等截面细直梁的横向振动 取梁未变形是的轴线方向为 X 轴 向右为正 取对称面内与 x 轴垂直的方向为 y 轴 向上为正 梁在横向振动时 其挠曲线随时间而变化 可表示为 y y x t 1 除了理想弹性体与微幅振动的假设外 我们还假设梁的长度与截面高度之比是相当 大的 大于 10 故可以采用材料力学中的梁弯曲的简化理论 根据这一理论 在我们采 用的坐标系中 梁挠曲线的微分方程可以表示为 2 2 2 y EIM x 其中 E 是弹性模量 I 是截面惯性矩 EI 为梁的弯曲刚度 M 代表 x 截面处的弯 矩 挂怒弯矩的正负 规定为左截面上顺时针方向为正 右截面逆时针方向为正 关于剪 力 Q 的正负 规定为左截面向上为正 右截面向下为正 至于分布载荷集度 q 的正向则规 定与 y 轴相同 在这些规定下 有 3 MQ Qq xx 于是 对方程 2 求偏导 可得 4 222 222 EI EI yMyQ Qq xxxxxx 考虑到等截面细直梁的 EI 是常量 就有 5 34 34 yy EIQEIq xx 方程 5 就是在等截面梁在集度为 q 的分部李作用下的挠曲微分方程 应用达朗贝尔原理 在梁上加以分布得惯性力 其集度为 6 2 2 y q t 其中代表梁单位长度的质量 假设阻尼的影响可以忽略不计 那么梁在自由振动中 的载荷就仅仅是分布的惯性力 将式 6 代入 5 即得到等截面梁自由弯曲振动微分方 程 7 42 42 yy EI xt 其中 2 aEI 为求解上述偏微分方程 7 采用分离变量法 假设方程的解为 y x t X x Y t 8 将式 8 代入 7 得 9 224 24 1Ya d X YtX dx 上式左端仅依赖于 t 而右端仅依赖于 x 因此要使对于任何 x t 上式均成立 必须二者 均等于一个常数 将这一常数记为 p2 于是有 10 2 2 2 0 Y p Y t 11 4 42 4 0 d X Xp a dx 方程 10 的通解为 Y t Asinpt Bcospt 12 其中 A B 为积分常数 方程 11 的通解为 13 1234 x cossinXC ch xC sh xCxCx 二 简支梁的固有振型和固有频率二 简支梁的固有振型和固有频率 简支梁的边界条件为 X 0 0 X 0 0 X l 0 X l 0 所以有 123 0CCC 特征方程为 sin0l 由此得特征值为 1 2 i i l l 与此相应的固有频率为 2 4 i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 论文的写作流程
- 经济学本科毕业论文题目与选题
- 工程监理合同是公开招标(3篇)
- 试论潮汕方言词语与古代汉语的历史渊源关系
- 工程合同相关案例分析题(3篇)
- 略论郑观应的商战思想
- 备案表填写说明【模板】
- 人教社2019版高中英语教材语篇分析-以必修一阅读板块为例
- 灌注桩钢筋笼浮笼原因分析及处理方案
- 品牌LOGO设计提案
- 福建省高速公路集团公司招聘考试笔试试题【含答案】
- 2025宁电投(石嘴山市)能源发展有限公司秋季校园招聘100人笔试考试参考试题及答案解析
- 【MOOC】金融风险管理-中央财经大学 中国大学慕课MOOC答案
- 译林版七年级上册初一英语全册课时练(一课一练)
- 20G520-1-2钢吊车梁(6m-9m)2020年合订本
- 电梯维护保养规则(TSG T5002-2017)
- 锻炼口才的100篇文章
- 科幻小说《三体》内容简介读书分享会ppt图文课件
- 考研真题普通物理
- 环卫工作和交通安全
- 乳腺癌诊疗指南(2022年版)
评论
0/150
提交评论