




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
选修2-3:二项式定理常见题型1二项式定理:,2基本概念:二项式展开式:右边的多项式叫做的二项展开式。二项式系数:展开式中各项的系数.项数:共n+1项,是关于与的齐次多项式通项:展开式中的第项叫做二项式展开式的通项。用表示。3性质:二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即.二项式系数和:令,可得二项式系数的和为, 变形式。奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令,则,从而得到:二项式系数的最大项:如果二项式的幂指数是偶数时,则中间一项的二项式系数取得最大值。 如果二项式的幂指数是奇数时,则中间两项的二项式系数,同时取得最大值。系数的最大项:求展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别为,设第项系数最大,应有,从而解出来。题型一:二项式定理的逆用;例:解: 练:解: 题型二:利用通项公式求的系数;例:在二项式的展开式中倒数第项的系数为,求含有的项的系数?解:由条件知,即,解得,由,由题意,则含有的项是第项,系数为。练:求展开式中的系数?解:,令,则故的系数为。题型三:利用通项公式求常数项;例:求二项式的展开式中的常数项?解:,令,得,所以练:求二项式的展开式中的常数项?解:,令,得,所以练:若的二项展开式中第项为常数项,则解:,令,得.题型四:利用通项公式,再讨论而确定有理数项;例:求二项式展开式中的有理项?解:,令,()得,所以当时,当时,。题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若展开式中偶数项系数和为,求.解:设展开式中各项系数依次设为 ,则有,,则有 将-得: 有题意得,。练:若的展开式中,所有的奇数项的系数和为,求它的中间项。解:,解得 所以中间两个项分别为,题型六:最大系数,最大项;例:已知,若展开式中第项,第项与第项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:解出,当时,展开式中二项式系数最大的项是,当时,展开式中二项式系数最大的项是,。练:在的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数,则中间一项的二项式系数最大,即,也就是第项。练:在的展开式中,只有第项的二项式最大,则展开式中的常数项是多少?解:只有第项的二项式最大,则,即,所以展开式中常数项为第七项等于练:写出在的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数是奇数,所以中间两项()的二项式系数相等,且同时取得最大值,从而有的系数最小,系数最大。练:若展开式前三项的二项式系数和等于,求的展开式中系数最大的项?解:由解出,假设项最大,化简得到,又,展开式中系数最大的项为,有练:在的展开式中系数最大的项是多少?解:假设项最大,化简得到,又,展开式中系数最大的项为题型七:含有三项变两项;例:求当的展开式中的一次项的系数?解法:,当且仅当时,的展开式中才有x的一次项,此时,所以得一次项为它的系数为。解法: 故展开式中含的项为,故展开式中的系数为240.练:求式子的常数项?解:,设第项为常数项,则,得, .题型八:两个二项式相乘;例:解: .练:解:.练:解:题型九:奇数项的系数和与偶数项的系数和;例:解:题型十:赋值法;例:设二项式的展开式的各项系数的和为,所有二项式系数的和为,若,则等于多少?解:若,有, 令得,又,即解得,.练:若的展开式中各项系数之和为,则展开式的常数项为多少?解:令,则的展开式中各项系数之和为,所以,则展开式的常数项为.练:解: 练:解:题型十一:整除性;例:证明:能被64整除证:由于各项均能被64整除练习:1、(x1)11展开式中x的偶次项系数之和是 1、设f(x)=(x-1)11, 偶次项系数之和是2、 2、4n3、的展开式中的有理项是展开式的第 项3、3,9,15,21 4、(2x-1)5展开式中各项系数绝对值之和是 4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为355、求(1+x+x2)(1-x)10展开式中x4的系数5、,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项作积,第一个因式中的x3与(1-x)9展开式中的项作积,故x4的系数是6、求(1+x)+(1+x)2+(1+x)10展开式中x3的系数6、=,原式中x3实为这分子中的x4,则所求系数为7、若展开式中,x的系数为21,问m、n为何值时,x2的系数最小?7、由条件得m+n=21,x2的项为,则因nN,故当n=10或11时上式有最小值,也就是m=11和n=10,或m=10和n=11时,x2的系数最小8、自然数n为偶数时,求证: 8、原式=9、求被9除的余数9、 ,kZ,9k-1Z,被9除余810、在(x2+3x+2)5的展开式中,求x的系数10、在(x+1)5展开式中,常数项为1,含x的项为,在(2+x)5展开式中,常数项为25=32,含x的项为 展开式中含x的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Lesson18 Let's go shopping!说课稿-2025-2026学年小学英语第二级B剑桥少儿英语(2013版)
- 通风吊筋加固施工方案
- 2025年文物保护工程从业资格考试(责任设计师石窟寺和石刻)综合练习题及答案
- 沉淀塘工程施工方案
- 高浓度有机污水处理技术方案
- 水电工程组织设计x
- 土建工程施工图纸深化方案
- 热力设备备品备件管理方案
- 工业园区水电气建设方案
- 智算中心关键设备维护保养计划
- 煤矿安全规程2025版解读
- 尿培养的采集
- 2025年全国企业员工全面质量管理知识竞赛题及参考答案
- 2025年广东省中考英语试卷深度评析及2026年备考策略
- 2025-2026秋中小学升旗仪式演讲稿:(第3周)积跬步养习惯向未来
- 小学综合实践活动成长手册三年级上册第2课《传统游戏》教案
- 《电气CAD》(汪玲娟)625-5教案 第3课 AutoCAD2020操作界面与绘图环境
- 绿色建筑和绿色建筑材料
- 《七堂保险金信托课》读书笔记思维导图
- Jade6操作和应用优秀课件
- 渐开线花键强度校核(完整计算)
评论
0/150
提交评论