《小学数学专题研究》自考资料_第1页
《小学数学专题研究》自考资料_第2页
《小学数学专题研究》自考资料_第3页
《小学数学专题研究》自考资料_第4页
《小学数学专题研究》自考资料_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档 1欢迎下载 小学数学专题研究小学数学专题研究 自考复习资自考复习资 料料 课程代码 课程代码 2806928069 第一章第一章 小学数学课程目标及内容小学数学课程目标及内容 对象 数学是一种研究客观世界中数量关系和空间形式的一门科学 对象 数学是一种研究客观世界中数量关系和空间形式的一门科学 本质 数学是一种研究思想事物的科学本质 数学是一种研究思想事物的科学 恩格斯 恩格斯 作用 一种科学只有在成功运用数学时 才算达到了真正完美的地作用 一种科学只有在成功运用数学时 才算达到了真正完美的地 步 步 各门学科的数学化 数学作为一种文化 已成为共识 各门学科的数学化 数学作为一种文化 已成为共识 我国数学课程及演变过程 我国数学课程及演变过程 1 1 萌芽时期 公元前萌芽时期 公元前 600600 年前 年前 2 2 初等数学时期初等数学时期 公元前公元前 600600 年年 1717 世纪中叶世纪中叶 3 3 变量数学时期 变量数学时期 1717 世纪中叶世纪中叶 1919 世纪世纪 2020 年代 年代 4 4 近代数学时期 近代数学时期 1919 世纪世纪 2020 年代年代 第二次世界大战 第二次世界大战 5 5 现代数学时期 第二次世界大战以来 现代数学时期 第二次世界大战以来 作为一门学科 在我国却迟到隋唐时期 才在国子监设算学 作为一门学科 在我国却迟到隋唐时期 才在国子监设算学 算学作为小学课程则从近代光绪二十八年 算学作为小学课程则从近代光绪二十八年 19021902 年 才正式开始 年 才正式开始 18921892 年编年编 笔算数学笔算数学 则是我国学校里的第一部算学教科书 则是我国学校里的第一部算学教科书 19031903 年春编制年春编制 最新教科书最新教科书 我国自己编写的第一本正式的小学算我国自己编写的第一本正式的小学算 学课本问世 学课本问世 19781978 年年 2 2 月月 全日制十年制小学数学教学大纲 试行草案 全日制十年制小学数学教学大纲 试行草案 明确明确 精品文档 2欢迎下载 将小学算术改为统一的数学 将小学算术改为统一的数学 19921992 年三个面向年三个面向 面向现代化面向现代化 面向世界面向世界 面向未来面向未来 国外数学课程变革的简况及趋势 国外数学课程变革的简况及趋势 2020 世纪初 德国数学家克莱因发起并领导了数学教育近代化运动 世纪初 德国数学家克莱因发起并领导了数学教育近代化运动 现代数学运动发展是不平衡的 分三种类型 现代数学运动发展是不平衡的 分三种类型 1 1 革新型革新型 如英美 如英美 2 2 进进 化型化型 如苏联 如苏联 3 3 中间型中间型 如日本 如日本 相似之处 相似之处 1 1 精简传统的算术内容 精简传统的算术内容 2 2 增减或渗透集合 函数 统计等现代数学内容 增减或渗透集合 函数 统计等现代数学内容 3 3 用结构思想处理传统内容 用结构思想处理传统内容 回归基础回归基础 改为改为 走向基础走向基础 大众数学大众数学 目标让全体学生学好数学 学习更多的数学而且是需要的目标让全体学生学好数学 学习更多的数学而且是需要的 数学 数学 小学数学课程目标是小学教育方向和性质的表征 也是小学数学教小学数学课程目标是小学教育方向和性质的表征 也是小学数学教 育活动 包括组织教学内容 确定教学要求 选择教学方法 进行育活动 包括组织教学内容 确定教学要求 选择教学方法 进行 质量评估 决定考试命题等进行的依据 质量评估 决定考试命题等进行的依据 小学数学课程目标与分析小学数学课程目标与分析 1 1 理解和掌握最基础的数学知识 理解和掌握最基础的数学知识 2 2 培养初步数学的能力 是核心 解决实际问题的能力是最终母培养初步数学的能力 是核心 解决实际问题的能力是最终母 的 的 3 3 培养良好的思想品德 培养良好的思想品德 学科数学与科学数学学科数学与科学数学 精品文档 3欢迎下载 课程内容的载体是教材课程内容的载体是教材 教科书 教科书 学科数学的内容是依赖于科学数学二建立和发展的 学科数学的内容是依赖于科学数学二建立和发展的 1 1 作为科学的数学 它不考虑人们是否能够理解和接受 只要能完作为科学的数学 它不考虑人们是否能够理解和接受 只要能完 备而又精确地阐明某种数学理论 更深刻地反应世界的空间形式备而又精确地阐明某种数学理论 更深刻地反应世界的空间形式 和数量关系就行 而作为学科的数学必须遵循学生的认知规律和和数量关系就行 而作为学科的数学必须遵循学生的认知规律和 心理特点 往往日常生活 生产中的具体事例出发 对现象进行心理特点 往往日常生活 生产中的具体事例出发 对现象进行 描述 然而转向定义 定律 性质等的揭露 描述 然而转向定义 定律 性质等的揭露 2 2 作为科学数学 对所有的定理 法则等都必须进行严格的论证和作为科学数学 对所有的定理 法则等都必须进行严格的论证和 推导 而作为学科的数学限于学生的接收水平 往往通过列举一推导 而作为学科的数学限于学生的接收水平 往往通过列举一 些事例用不完全归纳法得出结论 些事例用不完全归纳法得出结论 3 3 作为科学的数学 完全按照数学伦理的逻辑系统进行安排 可以作为科学的数学 完全按照数学伦理的逻辑系统进行安排 可以 难易起伏不均 作为学科数学在不影响科学性的前提下 兼顾小难易起伏不均 作为学科数学在不影响科学性的前提下 兼顾小 学生的认知规律 对某些内容可以适当调整 学生的认知规律 对某些内容可以适当调整 由此可见 科学数学是作为人类认识的结果而呈现的 已完由此可见 科学数学是作为人类认识的结果而呈现的 已完 全揭示数量关系和空间形式为目的 而学科数学可看作为认识对象全揭示数量关系和空间形式为目的 而学科数学可看作为认识对象 而存在 对作为小学学科的数学而言 除了正确反映科学数学的知而存在 对作为小学学科的数学而言 除了正确反映科学数学的知 识外 还必须充分遵循小学生的认知规律 有利于使他们学懂 学识外 还必须充分遵循小学生的认知规律 有利于使他们学懂 学 好 学活 有利于发展他们的智能 有利于进行思想品德教育 好 学活 有利于发展他们的智能 有利于进行思想品德教育 小学数学课程内容编排原则 小学数学课程内容编排原则 1 1 以数与计算为主线 以数与形式为重点 把各部分内容按其彼此以数与计算为主线 以数与形式为重点 把各部分内容按其彼此 的内在联系结合起来 的内在联系结合起来 2 2 由浅入深 由易到难 循序渐进 螺旋上升 由浅入深 由易到难 循序渐进 螺旋上升 精品文档 4欢迎下载 3 3 突出重点 分散难点 突出重点 分散难点 4 4 把数学知识和数学应用结合起来 把数学知识和数学应用结合起来 5 5 注重趣味性 注重趣味性 数学学科的特点 数学学科的特点 1 1 高度的抽象性高度的抽象性 2 2 严密的逻辑性严密的逻辑性 3 3 应用的广泛性 应用的广泛性 悖论 英国数学家罗素提出一个悖论 指出作为数学基础的集合论悖论 英国数学家罗素提出一个悖论 指出作为数学基础的集合论 本身就存在着矛盾 本身就存在着矛盾 理发师理发师 悖论 悖论 第二章第二章 小学数学解题的理论依据小学数学解题的理论依据 数学问题虽然名称不同 叙述内容不同 但它们却有一个共同数学问题虽然名称不同 叙述内容不同 但它们却有一个共同 的特点 即是在一定的知识背景中提出的 知识背景主要包括已有的特点 即是在一定的知识背景中提出的 知识背景主要包括已有 的概念 理论和方法 因此 我们认为依照数学问题的解答与知识的概念 理论和方法 因此 我们认为依照数学问题的解答与知识 背景的关系 可以把数学问题大致分为两类 常规问题和非常规问背景的关系 可以把数学问题大致分为两类 常规问题和非常规问 题 题 依照数学问题提法的意义是否明确 数学问题的条件是否充分 依照数学问题提法的意义是否明确 数学问题的条件是否充分 我们还可以把数学问题划分为 可能问题和不可能问题 我们还可以把数学问题划分为 可能问题和不可能问题 数学问题的组成成分是条件 目标和运算 数学问题的组成成分是条件 目标和运算 三大组成部分也叫 三大组成部分也叫 构成要素 构成要素 智力两个方面 一是天赋的潜力 特性和发展的容量 即健全智力两个方面 一是天赋的潜力 特性和发展的容量 即健全 的神经代谢的总和 二是发展得以进行下去的大脑功能 即能够决的神经代谢的总和 二是发展得以进行下去的大脑功能 即能够决 定操作和理解的功能 定操作和理解的功能 皮亚杰关于智力阶段的划分皮亚杰关于智力阶段的划分 1 1 感知运动阶段 感知运动阶段 0 0 2 2 岁 岁 精品文档 5欢迎下载 2 2 前运算阶段 前运算阶段 2 2 7 7 岁 岁 3 3 具体运算阶段 具体运算阶段 7 7 1111 岁 岁 4 4 形式运算阶段 形式运算阶段 1111 岁以上 岁以上 同化和顺应是相对立的两种力量 同化是一个人按照过去的经同化和顺应是相对立的两种力量 同化是一个人按照过去的经 验 图示来活动 顺应则是根据面临的新信息所作的改变和思验 图示来活动 顺应则是根据面临的新信息所作的改变和思 考 考 智力活动方式 智力活动方式 1 1 根据基本的心理过程 分为知觉方式 记忆方式和思维方式 根据基本的心理过程 分为知觉方式 记忆方式和思维方式 2 2 根据完成的主要功能 分为定向方式 执行和控制方式 根据完成的主要功能 分为定向方式 执行和控制方式 3 3 根据标准和规范化程度 分为计算性方式 算法指令性方式 根据标准和规范化程度 分为计算性方式 算法指令性方式 启发性方式 启发性方式 4 4 根据动作的共同性 分为一般方式和具体方式 根据动作的共同性 分为一般方式和具体方式 5 5 另外 根据智力活动在人类不同认知领域里的运用程度 又另外 根据智力活动在人类不同认知领域里的运用程度 又 可以分为一般方式 如分析 综合 抽象 概括 比较等 可以分为一般方式 如分析 综合 抽象 概括 比较等 和限于某一认识领域的特殊方式 和限于某一认识领域的特殊方式 思维 人脑对客观事物的本质特征 相互关系及其内在规律思维 人脑对客观事物的本质特征 相互关系及其内在规律 性的概括的 间接的反映 是人们对外接输入的信息的感知性的概括的 间接的反映 是人们对外接输入的信息的感知 的基础上经过分析 综合 比较 抽象 概括等智力活动方的基础上经过分析 综合 比较 抽象 概括等智力活动方 式 对其加工 推理和获得理性认识的心理过程 式 对其加工 推理和获得理性认识的心理过程 思维的本质 思维是间接认识事物 是通过感知与被直接认思维的本质 思维是间接认识事物 是通过感知与被直接认 识的事物有着合乎规律的联系的另一个对象而实现的 识的事物有着合乎规律的联系的另一个对象而实现的 精品文档 6欢迎下载 思维的类型 思维的类型 1 1 逻辑性思维逻辑性思维 2 2 非逻辑性思维 非逻辑性思维 形式逻辑思维 是以概念 判断 推理等思维方式 同一律 形式逻辑思维 是以概念 判断 推理等思维方式 同一律 矛盾律 排中律等思维规律 归纳 演绎 类比 科学假设矛盾律 排中律等思维规律 归纳 演绎 类比 科学假设 等思维方法为其研究对象 等思维方法为其研究对象 辩证逻辑思维 研究的是思维形式如何正确反映客观事物的辩证逻辑思维 研究的是思维形式如何正确反映客观事物的 运动变化 事物的内部矛盾 事物的有机联系和转化等问题 运动变化 事物的内部矛盾 事物的有机联系和转化等问题 其主要特点是用有限量来描述和刻画 其主要特点是用有限量来描述和刻画 数学思维 又叫数学型思维 就是以数和形为思维的对象 数学思维 又叫数学型思维 就是以数和形为思维的对象 以数学的语言和符号为思维的载体 以认识和发现数学规律以数学的语言和符号为思维的载体 以认识和发现数学规律 为目的的一种思维 为目的的一种思维 数学思维品质 灵活性 积极性 目的性 记忆性 广阔性 数学思维品质 灵活性 积极性 目的性 记忆性 广阔性 深刻性 批判性 准确性 简捷性 独创性和证明性 深刻性 批判性 准确性 简捷性 独创性和证明性 数学思维水平的评定 第一级水平数学思维水平的评定 第一级水平 第五级水平第五级水平 前两级水平是小学年级的学生所特有的 第三级水平是初中前两级水平是小学年级的学生所特有的 第三级水平是初中 年级学生所特有的 第四级水平是高中年级学生所特有的 年级学生所特有的 第四级水平是高中年级学生所特有的 至于第五级水平无论是几何方面还是代数方面的 均属于数至于第五级水平无论是几何方面还是代数方面的 均属于数 学思维的现代水平 一般的中学阶段的学生是难以达到的 学思维的现代水平 一般的中学阶段的学生是难以达到的 影响小学数学解题的心理因素 两大 影响小学数学解题的心理因素 两大 一 一 问题解决的特征 问题解决的特征 1 1 问题情境因素问题情境因素 2 2 解题者的个体特解题者的个体特 征 解题者知识经验基础和个性品质 征 解题者知识经验基础和个性品质 3 3 解题中的认解题中的认 知策略 解题者用来调节注意 回忆和思维的技能 知策略 解题者用来调节注意 回忆和思维的技能 二 二 迁移与思维定势 迁移是指一种知识 技能的学习和迁移与思维定势 迁移是指一种知识 技能的学习和 精品文档 7欢迎下载 应用对另一种知识 技能的学习和应用所施加的影响 应用对另一种知识 技能的学习和应用所施加的影响 思维定势 指的是一种思维的定向预备状态 在思维思维定势 指的是一种思维的定向预备状态 在思维 不受到新干扰的情况下 人们按照既定的方向或者方不受到新干扰的情况下 人们按照既定的方向或者方 法去思考 法去思考 第三章第三章 小学数学解题的认知过程小学数学解题的认知过程 学习 学习 从广义上理解 学习是有机体凭借经验的获得而产生从广义上理解 学习是有机体凭借经验的获得而产生 的比较持久的行为 思维 想象的比较持久的行为 思维 想象 记忆 感知等内部心理活动和语记忆 感知等内部心理活动和语 言 表情 动作等外部活动 变化 言 表情 动作等外部活动 变化 从狭义上理解 学习是指学生在老师指导下 有目的 有计划 从狭义上理解 学习是指学生在老师指导下 有目的 有计划 有组织 有步骤地进行的获得知识 形成技能 培养能力 发展个有组织 有步骤地进行的获得知识 形成技能 培养能力 发展个 性的过程 性的过程 桑代克桑代克 刺激反应理论 学习是刺激和反应的联结 刺激反应理论 学习是刺激和反应的联结 苛勒苛勒 完形理论 学习是零碎和知觉信息的再组织过程 完形理论 学习是零碎和知觉信息的再组织过程 托尔曼托尔曼 认知理论 学习是对环境中的刺激 依其关系形成认知理论 学习是对环境中的刺激 依其关系形成 一种新的认知结构的过程 是意义的获得和实现期望的过程等等 一种新的认知结构的过程 是意义的获得和实现期望的过程等等 小学数学学习 是在人为指导下获得数学知识 数学技能和数小学数学学习 是在人为指导下获得数学知识 数学技能和数 学能力 发展个性数学品质的过程 由于数学自身具有逻辑的严谨学能力 发展个性数学品质的过程 由于数学自身具有逻辑的严谨 性 高度的抽象性及应用的广泛性 所以 小学数学学习的核心内性 高度的抽象性及应用的广泛性 所以 小学数学学习的核心内 容和最终母的是解决小学数学问题 容和最终母的是解决小学数学问题 小学数学解题 作为小学生的一种特殊心理活动 综合起来说 小学数学解题 作为小学生的一种特殊心理活动 综合起来说 它属于一种认知学习 小学数学解题是一种逐渐深入的 具体某种它属于一种认知学习 小学数学解题是一种逐渐深入的 具体某种 精品文档 8欢迎下载 程度创新性和思维对策的心理活动 认知 过程 不求甚解 生搬程度创新性和思维对策的心理活动 认知 过程 不求甚解 生搬 硬套 机械呆板等等 都不是小学数学解题的真实含义 硬套 机械呆板等等 都不是小学数学解题的真实含义 认知结构 是指个体在感知及理解客观现实的基础上 在头脑认知结构 是指个体在感知及理解客观现实的基础上 在头脑 里形成的一种心理结构 简单点说认知结构就是在个体头脑里的知里形成的一种心理结构 简单点说认知结构就是在个体头脑里的知 识结构 识结构 小学数学解题作为小学数学学习的主要内容和方式 其意义也小学数学解题作为小学数学学习的主要内容和方式 其意义也 就在于不断积极主动地建立 扩大和重新组织数学认知结构 并伴就在于不断积极主动地建立 扩大和重新组织数学认知结构 并伴 随着同化和顺应等特征 随着同化和顺应等特征 小学数学解题并不是数学知识的简单应用 而是以原有数学认小学数学解题并不是数学知识的简单应用 而是以原有数学认 知结构为依据 对新知识进行加工 知结构为依据 对新知识进行加工 技能 是顺利完成某种任务的一种心智或动作的活动方式 她技能 是顺利完成某种任务的一种心智或动作的活动方式 她 需要通过练习才能形成 需要通过练习才能形成 动作 泛指在完成一项具体任务中所涉及的一系列操作 以完动作 泛指在完成一项具体任务中所涉及的一系列操作 以完 善 合理方式组织起来并顺利进行时 就成为动作技能 心智系指善 合理方式组织起来并顺利进行时 就成为动作技能 心智系指 借助于内部语言在头脑中进行的认识活动 它包括感知 记忆 想借助于内部语言在头脑中进行的认识活动 它包括感知 记忆 想 象和思维 但以抽象思维为它的主要成分 象和思维 但以抽象思维为它的主要成分 技能和能力 是不同的概念 二者既有联系 又有区别 技能技能和能力 是不同的概念 二者既有联系 又有区别 技能 是指完成一定任务的活动方式 能力则是顺利完成任务的个性心理是指完成一定任务的活动方式 能力则是顺利完成任务的个性心理 特征 技能的形成以一定的能力为前提 反过来又对能力的发展起特征 技能的形成以一定的能力为前提 反过来又对能力的发展起 重要的促进作用 重要的促进作用 数学动作技能 指运用工具绘图的技能 测量技能 使用计算数学动作技能 指运用工具绘图的技能 测量技能 使用计算 工具的技能等 工具的技能等 精品文档 9欢迎下载 数学心智技能 指数的计算技能 式的恒等变形技能 解方程 数学心智技能 指数的计算技能 式的恒等变形技能 解方程 解不等式的技能 推理论证技能 运用数学方法的技能等 解不等式的技能 推理论证技能 运用数学方法的技能等 这两种数学技能既有联系又有区别 一方面数学心智技能的形这两种数学技能既有联系又有区别 一方面数学心智技能的形 成 与数学动作技能有关 另一方面 数学动作技能又受数学心智成 与数学动作技能有关 另一方面 数学动作技能又受数学心智 技能控制 技能控制 数学认知技能 的形成 也有一个过程 就小学数学解题而言 数学认知技能 的形成 也有一个过程 就小学数学解题而言 可以概括成认知阶段 联结形成阶段和自动阶段 可以概括成认知阶段 联结形成阶段和自动阶段 小学数学解题中的数学认知技能尽管有上述的几个阶段 但最小学数学解题中的数学认知技能尽管有上述的几个阶段 但最 终得以形成 都要经历一个从终得以形成 都要经历一个从 会会 到到 熟熟 的过程 其间必须不的过程 其间必须不 断通过有计划 有目的的练习 才能完成这一转变 断通过有计划 有目的的练习 才能完成这一转变 发展 作为一般意义上的理解是指人的各种特性在结构上和机发展 作为一般意义上的理解是指人的各种特性在结构上和机 能上的变化 发展有生理发展和心理发展之分 能上的变化 发展有生理发展和心理发展之分 认知发展 是指与大脑生长和知识技能有关的发展方面 涉及认知发展 是指与大脑生长和知识技能有关的发展方面 涉及 人在知觉 记忆 思维 语言 智力等方面种种功能的发展变化 人在知觉 记忆 思维 语言 智力等方面种种功能的发展变化 小学数学认知发展可以理解为小学数学认知结构和数学认知技小学数学认知发展可以理解为小学数学认知结构和数学认知技 能的发展 是通过小学数学活动过程来体现的 认知发展一般包含能的发展 是通过小学数学活动过程来体现的 认知发展一般包含 这几个阶段 这几个阶段 1 1 输入阶段输入阶段 2 2 同化和顺应阶段同化和顺应阶段 3 3 应用阶段 以上三个应用阶段 以上三个 阶段是密切联系的 阶段是密切联系的 第四章第四章小学数学解题的实质和结构小学数学解题的实质和结构 小学数学 即小学数学领域中的问题解决 不但要关心问题的小学数学 即小学数学领域中的问题解决 不但要关心问题的 结果 而且要关心求得结果的过程 也就是问题解决的整个思考活结果 而且要关心求得结果的过程 也就是问题解决的整个思考活 动 所以小学数学解题指的是按照一定的思维对策进行的一个思维动 所以小学数学解题指的是按照一定的思维对策进行的一个思维 精品文档 10欢迎下载 过程 一步一步地靠近目标 最终达到目标 其含义就是思考的活过程 一步一步地靠近目标 最终达到目标 其含义就是思考的活 动及探索的过程 动及探索的过程 1919 世纪中叶 德国数学家格拉斯曼才成功地建立了一个算术基世纪中叶 德国数学家格拉斯曼才成功地建立了一个算术基 本公理体系 解决和统一礼物在此之前人们一直混淆的上述问题 本公理体系 解决和统一礼物在此之前人们一直混淆的上述问题 小学数学解题也就意味着找出这样一个数学的一般原理 定义 小学数学解题也就意味着找出这样一个数学的一般原理 定义 公理 法则 定律 公式 的序列 当应用他们到问题的条件或者公理 法则 定律 公式 的序列 当应用他们到问题的条件或者 条件的推论 解法的中间结果 时 就能得到问题所要求的答案 条件的推论 解法的中间结果 时 就能得到问题所要求的答案 奥苏伯尔解题结构模式 奥苏伯尔解题结构模式 1 1 呈现问题的情境呈现问题的情境 2 2 明确问题的目标明确问题的目标 与已知条件与已知条件 3 3 填补空隙的过程填补空隙的过程 4 4 解答后的检验 解答后的检验 小学数学解题的几个阶段 小学数学解题的几个阶段 1 1 分析题意分析题意 2 2 寻找解法寻找解法 3 3 实行解法实行解法 4 4 回顾解法回顾解法 教育心理学认为根据解题者寻求解答的趋向可以把解题分为两教育心理学认为根据解题者寻求解答的趋向可以把解题分为两 种主要方式 一种是尝试错误式 另一种是顿悟式 种主要方式 一种是尝试错误式 另一种是顿悟式 尝试错误式是由进行无定向的尝试 重复无效动作 纠正暂时尝试错误式是由进行无定向的尝试 重复无效动作 纠正暂时 性尝试错误 直至出现解决问题得以成功的一系列反应所组成的行性尝试错误 直至出现解决问题得以成功的一系列反应所组成的行 动 动 顿悟式解决问题尝试错误式不同 它具有一定的顿悟式解决问题尝试错误式不同 它具有一定的 心向心向 努力 努力 发现手段与目标之间的有意义的联系 而这种联系正是问题赖以解发现手段与目标之间的有意义的联系 而这种联系正是问题赖以解 决的基础 决的基础 在小学数学解题中 尝试错误式和顿悟式实际上司不能绝对化在小学数学解题中 尝试错误式和顿悟式实际上司不能绝对化 的 尝试错误式解决可能是隐含在内而不表露于外的 所以看不出的 尝试错误式解决可能是隐含在内而不表露于外的 所以看不出 是尝试错误式 未必就是顿悟式 顿悟式解题也不一定是彻底的 是尝试错误式 未必就是顿悟式 顿悟式解题也不一定是彻底的 精品文档 11欢迎下载 完善的和即时的 尽管看上去解答是突然出现的 事实上却往往经完善的和即时的 尽管看上去解答是突然出现的 事实上却往往经 历着一定的甚至是相当曲折的过程 历着一定的甚至是相当曲折的过程 常规问题解题规则 常规问题解题规则 1 1 公式规则公式规则 2 2 恒等式规则恒等式规则 3 3 定理规则定理规则 4 4 定义规则定义规则 非常规问题就是没有一般解题规则的数学问题 它的解题步骤非常规问题就是没有一般解题规则的数学问题 它的解题步骤 序列 可以利用技巧将其转化为等价的常规问题 或分解为若干个序列 可以利用技巧将其转化为等价的常规问题 或分解为若干个 小常规问题 或通过分析 综合等方法来寻求 小常规问题 或通过分析 综合等方法来寻求 算术基本公式体系是小学数学中的定义 公理 定理 法则等算术基本公式体系是小学数学中的定义 公理 定理 法则等 之间的逻辑关系 之间的逻辑关系 小学数学解题是以思考为内涵 以问题目标为定向的心理活动小学数学解题是以思考为内涵 以问题目标为定向的心理活动 过程 过程 第五章第五章 小学数学解题的思想方法小学数学解题的思想方法 化归化归 类比类比 归纳归纳 美籍匈牙利数学家波利亚在美籍匈牙利数学家波利亚在 怎样解题怎样解题 数学与合情推理数学与合情推理 关于数学解题的核心观点就是发现与再创造 关于数学解题的核心观点就是发现与再创造 苏联苏联 娅诺夫斯卡娅娅诺夫斯卡娅 解题意味着什么解题意味着什么 解题也就意味着把解题也就意味着把 所要解的问题转化到已经解过的问题 所要解的问题转化到已经解过的问题 法国法国 笛卡尔笛卡尔 我所解决的每一个问题都将成为范例 以用于解我所解决的每一个问题都将成为范例 以用于解 决其他问题 决其他问题 化归法的一般模式为 化归法的一般模式为 化归法的特点 在于它具有较强的目的性 方向性和概括性 化归法的特点 在于它具有较强的目的性 方向性和概括性 基本原则 是由未知到已知 由难到易 由繁到简 基本原则 是由未知到已知 由难到易 由繁到简 精品文档 12欢迎下载 它的方向就是如何实现由所要解决的问题向已解决的或较容易它的方向就是如何实现由所要解决的问题向已解决的或较容易 解决的问题的转化 这里蕴含着发现 发明及创造性的活动 解决的问题的转化 这里蕴含着发现 发明及创造性的活动 从广义上的理解化归是一种思想 如果从狭义上来看 化归乃从广义上的理解化归是一种思想 如果从狭义上来看 化归乃 是重要的常用的和具体的解决方法之一 而且又有分割组合 映射是重要的常用的和具体的解决方法之一 而且又有分割组合 映射 反演等分别 反演等分别 分割组合的一般模式 分割组合的一般模式 分割组合 就是把所要求的问题 按照可能和需要 分割成若分割组合 就是把所要求的问题 按照可能和需要 分割成若 干部分 使他们更容易于求解 再将这些解答有机地组合起来 过干部分 使他们更容易于求解 再将这些解答有机地组合起来 过 渡到问题的最终结论 渡到问题的最终结论 映射反演就是映射和反演两种方法并用 映射反演就是映射和反演两种方法并用 映射 就是在两类数学对象或两个数学集合的元素之间建立的映射 就是在两类数学对象或两个数学集合的元素之间建立的 某种对应关系 某种对应关系 反演 就是从已知运算往回推 每一步运算都以其逆运算来代反演 就是从已知运算往回推 每一步运算都以其逆运算来代 替 相对映射而言 反演就是逆映射 替 相对映射而言 反演就是逆映射 在数学解题中 这种映射反演具体表现为坐标法 复数定向法 在数学解题中 这种映射反演具体表现为坐标法 复数定向法 换元法等 换元法等 万能发现发 笛卡尔 万能发现发 笛卡尔 这种模式在某些情况下是不适用的 这种方法包含了这种模式在某些情况下是不适用的 这种方法包含了 数学化数学化 代数化代数化 计算化计算化 等合理的化归思想方法 等合理的化归思想方法 类比法 是根据两个或两类不同的对象在某些方面 如特征 类比法 是根据两个或两类不同的对象在某些方面 如特征 属性 关系等 的类同之处 猜测着两个对象在其它方面也可能有属性 关系等 的类同之处 猜测着两个对象在其它方面也可能有 类同之处 并作出某种判断的推理方法 类同之处 并作出某种判断的推理方法 精品文档 13欢迎下载 基本模式 基本模式 类比的结论属于或然性推论 因为从前提到结论并不具备逻辑类比的结论属于或然性推论 因为从前提到结论并不具备逻辑 必然性 也就是说 类比也有一定的局限性 其结论常常是不可靠必然性 也就是说 类比也有一定的局限性 其结论常常是不可靠 地的 甚至是完全错误的 地的 甚至是完全错误的 归纳法 是指通过对特殊情形的分析引出普遍的结论的推理方归纳法 是指通过对特殊情形的分析引出普遍的结论的推理方 法 德国大数学家高斯就曾说过 他的许多定理靠的是归纳法发明法 德国大数学家高斯就曾说过 他的许多定理靠的是归纳法发明 的 证明只是一个补行的手续 归纳常常是建立在有目的 有计划的 证明只是一个补行的手续 归纳常常是建立在有目的 有计划 的观察和试验基础上的 的观察和试验基础上的 根据对象是否完备 归纳法又分为完全归纳法和不完全归纳法根据对象是否完备 归纳法又分为完全归纳法和不完全归纳法 两种 两种 完全归纳法 是根据某类事物中每一个对象的情况或每一个子完全归纳法 是根据某类事物中每一个对象的情况或每一个子 类的情况 而作出该类事物的一般性结论的推理 类的情况 而作出该类事物的一般性结论的推理 上面两种安全归纳推理 前者根据每一个情况而得出一般性结上面两种安全归纳推理 前者根据每一个情况而得出一般性结 论 后者根据每一类特殊 子类 情况而得出一般性结论 它们子论 后者根据每一类特殊 子类 情况而得出一般性结论 它们子 本质上是相互联系的 前者是后者的特例 后者死前者的推广 所本质上是相互联系的 前者是后者的特例 后者死前者的推广 所 以 通常也可以把后者作为完全归纳推理的一般形式 以 通常也可以把后者作为完全归纳推理的一般形式 完全归纳法实质上也是一种演绎推理 完全归纳法实质上也是一种演绎推理 不完全归纳法 是根据对某类事物中的一部分对象的情况 而不完全归纳法 是根据对某类事物中的一部分对象的情况 而 作出关于该事物的一般性结论的推理 不完全归纳法的推理形式 作出关于该事物的一般性结论的推理 不完全归纳法的推理形式 和归纳法不同 数学归纳法属于论证的范畴 而不是猜测的方和归纳法不同 数学归纳法属于论证的范畴 而不是猜测的方 法 但是在归纳法与数学归纳法之间也存在着相互依赖 相互渗透法 但是在归纳法与数学归纳法之间也存在着相互依赖 相互渗透 的辩证关系 换言之 数学归纳法所证明的往往是由归纳法所得出的辩证关系 换言之 数学归纳法所证明的往往是由归纳法所得出 精品文档 14欢迎下载 的猜测 而归纳法所得出的猜测有些可用数学归纳法来证明 而且 的猜测 而归纳法所得出的猜测有些可用数学归纳法来证明 而且 更为重要的是 归纳的过程往往为应用数学归纳法去证明相应的结更为重要的是 归纳的过程往往为应用数学归纳法去证明相应的结 论打下了基础 反之证明的过程则加深了对原来猜测的理解 论打下了基础 反之证明的过程则加深了对原来猜测的理解 创造 一般是指创造者的主观意识活动 通过科学实践而对自创造 一般是指创造者的主观意识活动 通过科学实践而对自 然界的某一方面或某些方面的合乎规律的反映 它是一种现象 然界的某一方面或某些方面的合乎规律的反映 它是一种现象 创造的三大基本特征 创造的三大基本特征 1 1 实践性实践性 2 2 创造者的创造能力充分发挥创造者的创造能力充分发挥 3 3 创新性 即开创性和新颖性 创新性 即开创性和新颖性 创造性作为一个认知范畴的概念 系指一种能力或特性 按教创造性作为一个认知范畴的概念 系指一种能力或特性 按教 育心理学的观点 它和人的智力 智慧品质以及人格等有着密切的育心理学的观点 它和人的智力 智慧品质以及人格等有着密切的 关系 关系 创造和创造性不能等同 不可相互替代 但两者共处一体 因创造和创造性不能等同 不可相互替代 但两者共处一体 因 为如果强调过程 着眼于心理机制的话 那么创造即是一种特殊的为如果强调过程 着眼于心理机制的话 那么创造即是一种特殊的 解决问题的活动 是解决问题的最高表现 而任何问题的解决都需解决问题的活动 是解决问题的最高表现 而任何问题的解决都需 要一定的创造性作为基础 要一定的创造性作为基础 创造性既然贯穿在始于问题提出 终于问题解决这一创造过程创造性既然贯穿在始于问题提出 终于问题解决这一创造过程 中 就起内涵来说 它也具有一定的阶段性 中 就起内涵来说 它也具有一定的阶段性 想象 灵感和直觉 通常被人们称做创造性的精华 想象 灵感和直觉 通常被人们称做创造性的精华 核心 核心 想象 是在头脑中改造记忆中的表象而创造新形象的过程 它想象 是在头脑中改造记忆中的表象而创造新形象的过程 它 既是一种具有极大的自由度的思维活动形式 同时又是可以自觉地既是一种具有极大的自由度的思维活动形式 同时又是可以自觉地 引导进行的一种积极主动的心理形象 引导进行的一种积极主动的心理形象 灵感 是指人们在创造过程中 由于某种诱因的作用而突发的灵感 是指人们在创造过程中 由于某种诱因的作用而突发的 一种非逻辑的思维活动 一种非逻辑的思维活动 精品文档 15欢迎下载 灵感的特点 灵感引发的随机性 灵感显现的暂时性 灵感显灵感的特点 灵感引发的随机性 灵感显现的暂时性 灵感显 现过程中的情感性 现过程中的情感性 灵感的产生不是凭空生产的 不是考等待就能来临的 它的诱灵感的产生不是凭空生产的 不是考等待就能来临的 它的诱 发有着漫长的有意识的活动 有着相当的辛勤努力和实践为基础 发有着漫长的有意识的活动 有着相当的辛勤努力和实践为基础 如爱迪生说 天才乃是如爱迪生说 天才乃是 99 99 的勤奋加上的勤奋加上 1 1 的灵感 的灵感 小学数学解题中 我们也应该通过有意识的思考 去诱发灵感 小学数学解题中 我们也应该通过有意识的思考 去诱发灵感 直觉简单得说就是直接去觉察 直觉简单得说就是直接去觉察 直觉的三个明显的特征 直觉的三个明显的特征 1 1 它对问题的内在规律 即客观事物的本质联系 的深它对问题的内在规律 即客观事物的本质联系 的深 刻理解 刻理解 2 2 这种理解来自经验的积累 这种理解来自经验的积累 3 3 经验积累到一定的程度突然理性与感性产生共鸣时 经验积累到一定的程度突然理性与感性产生共鸣时 表现为豁然贯通的一种顿悟式的理解 表现为豁然贯通的一种顿悟式的理解 直觉 是从感性经验达到理性飞跃的人的认识过程的一直觉 是从感性经验达到理性飞跃的人的认识过程的一 种特殊表现形式 是逻辑顺序的高度简缩 种特殊表现形式 是逻辑顺序的高度简缩 总之想象 灵感 直觉的出现 不仅意味着常规思维中总之想象 灵感 直觉的出现 不仅意味着常规思维中 的的 跳跃跳跃 逻辑顺序的 逻辑顺序的 中断中断 及由此而得到的创造 及由此而得到的创造 性 而且三者常常又是紧密联系和相互作用的 或是想性 而且三者常常又是紧密联系和相互作用的 或是想 象诱发了灵感和直觉 或是灵感和直觉唤起了活跃的想象诱发了灵感和直觉 或是灵感和直觉唤起了活跃的想 象 象 第六章第六章 小学数学解题能力分析小学数学解题能力分析 精品文档 16欢迎下载 从广义上讲 数学能力是顺利完成数学活动所必备的 且直接从广义上讲 数学能力是顺利完成数学活动所必备的 且直接 影响其活动效率的一种心理特征 它是在数学活动过程中形成和发影响其活动效率的一种心理特征 它是在数学活动过程中形成和发 展起来的 并在这类活动中主要变现出来的比较稳定的心理特征 展起来的 并在这类活动中主要变现出来的比较稳定的心理特征 从狭义上讲 数学能力即理解为解决数学问题的个性特征 从狭义上讲 数学能力即理解为解决数学问题的个性特征 运算能力 这些运算能力最初表现为对其知识的理解和技能的运算能力 这些运算能力最初表现为对其知识的理解和技能的 形成上 进而体现在根据具体问题的特点 恰当地合理运用运算 形成上 进而体现在根据具体问题的特点 恰当地合理运用运算 与其他各种运算的灵活运用和巧妙的结合上 这也就表现出一种解与其他各种运算的灵活运用和巧妙的结合上 这也就表现出一种解 题的能力 即运算能力 题的能力 即运算能力 空间想象能力 在空间形式的问题中 所要研究的是图形的形空间想象能力 在空间形式的问题中 所要研究的是图形的形 状 图形的大小 图形与图形的位置的关系等 在研究过程中 除状 图形的大小 图形与图形的位置的关系等 在研究过程中 除 直接给出一些基本图形的性质外 总是要根据所给具体图形的特点直接给出一些基本图形的性质外 总是要根据所给具体图形的特点 和解决它的需要 把它分解和重新组合 即在头脑中进行感知和操和解决它的需要 把它分解和重新组合 即在头脑中进行感知和操 作 出现或构造出一些异于所给图形的新图形 并找到新的关系 作 出现或构造出一些异于所给图形的新图形 并找到新的关系 这又表现出一种解题的能力即空间想象能力 这又表现出一种解题的能力即空间想象能力 逻辑思维能力 数学问题的解决是解题者从感知获得的感性材逻辑思维能力 数学问题的解决是解题者从感知获得的感性材 料出发 通过分析和综合 抽象和概括 判断和推理等逻辑思维方料出发 通过分析和综合 抽象和概括 判断和推理等逻辑思维方 法 去粗取精 去伪取真 由此及彼 由表及里的改造 才上升到法 去粗取精 去伪取真 由此及彼 由表及里的改造 才上升到 理性认识 从而领会和掌握数学的规律和本质 因此 这仍然表现理性认识 从而领会和掌握数学的规律和本质 因此 这仍然表现 出一种解题的能力 逻辑思维能力这三者之间的关系既相互区别 出一种解题的能力 逻辑思维能力这三者之间的关系既相互区别 又相互联系和制约的 所以习惯上把他们概括成数学解题能力的主又相互联系和制约的 所以习惯上把他们概括成数学解题能力的主 要成分 要成分 瑞典心理学家魏德林为代表的欧美心理学家认为组成数学解题瑞典心理学家魏德林为代表的欧美心理学家认为组成数学解题 精品文档 17欢迎下载 能力的因素有 能力的因素有 1 1 一般因素一般因素 G G 主要指智力因素 主要指智力因素 2 2 数因素数因素 N N 对数概念的理解和应用 对数概念的理解和应用 3 3 空间因素空间因素 S S 对空间形式的理解 想象和抽象 对空间形式的理解 想象和抽象 4 4 语言因素语言因素 V V 用语言表达数学关系 用语言表达数学关系 5 5 推理因素推理因素 R R 运用逻辑思维 形象思维和直觉思维 运用逻辑思维 形象思维和直觉思维 日本的大桥正夫等学者 认为数学解题能力包括以下三个方面 日本的大桥正夫等学者 认为数学解题能力包括以下三个方面 A A 数理性的领会能力 具体要求是使之抽象化 使之数量数理性的领会能力 具体要求是使之抽象化 使之数量 化和图形化 使之记号化或形式化 化和图形化 使之记号化或形式化 B B 概括能力 具体要求是使之扩展 集中归纳 改变观点概括能力 具体要求是使之扩展 集中归纳 改变观点 和改变条件 和改变条件 C C 思维能力 具体要求是有计划按步骤地进行思考 进行思维能力 具体要求是有计划按步骤地进行思考 进行 类比或对比 有根据地进行证明 类比或对比 有根据地进行证明 苏联心理学家鲁捷茨基 苏联心理学家鲁捷茨基 1 1 使数学材料形式化能力使数学材料形式化能力 2 2 概括概括 数学材料的能力数学材料的能力 3 3 用数学和其他符号进行运算能力用数学和其他符号进行运算能力 4 4 连续而有连续而有 节奏的逻辑推理能力节奏的逻辑推理能力 5 5 缩短推理过程的能力缩短推理过程的能力 6 6 逆转心理过程的逆转心理过程的 能力能力 7 7 灵活的思维能力灵活的思维能力 8 8 数学记忆能力数学记忆能力 9 9 形成空间概念的能形成空间概念的能 力力 10 10 借助形象化 直观 努力 借助形象化 直观 努力 我们认为小学数学解题能力是取决于数学学科和数学活动我们认为小学数学解题能力是取决于数学学科和数学活动 的个人特性 是小学生顺利完成解题这种特殊的数学活动时所的个人特性 是小学生顺利完成解题这种特殊的数学活动时所 表现出来的心理品质的综合 概括数学材料 逆转心理过程 表现出来的心理品质的综合 概括数学材料 逆转心理过程 精品文档 18欢迎下载 灵活性 借助形象化等即是这种心理品质综合体中的具体成分 灵活性 借助形象化等即是这种心理品质综合体中的具体成分 概括数学材料能力主要表现 概括数学材料能力主要表现 1 1 在从所给数学材料的形成在从所给数学材料的形成 和结构中 能迅速抓住事物的和结构中 能迅速抓住事物的 数数 和和 形形 找出或发现具有 找出或发现具有 数学意义的关系与特征数学意义的关系与特征 2 2 正确辨认出或分离出某些对解决问题正确辨认出或分离出某些对解决问题 有效的成分与有数学意义的结构 有效的成分与有数学意义的结构 概括数学材料 还在于感知题目的形式结构 所谓题目的概括数学材料 还在于感知题目的形式结构 所谓题目的 形式结构是指构成题目实质的相互关联的量的综合体 形式结构是指构成题目实质的相互关联的量的综合体 概括数学材料的能力还充分体现在这样两个方面 一是从概括数学材料的能力还充分体现在这样两个方面 一是从 特殊的和具体的事物中 概括出某些一般的熟识的教学模式 特殊的和具体的事物中 概括出某些一般的熟识的教学模式 二是从孤立的和特殊的事物中 概括出未知的数学模式 综合二是从孤立的和特殊的事物中 概括出未知的数学模式 综合 起来也就是从具体内容摆脱出来 并且在各种对象 关系和运起来也就是从具体内容摆脱出来 并且在各种对象 关系和运 算的结构中 概括出相似的 一般的和本质的东西 算的结构中 概括出相似的 一般的和本质的东西 克鲁捷茨基认为对数学材料的概括能力 还应表现在问题克鲁捷茨基认为对数学材料的概括能力 还应表现在问题 的类型上即从不同的题目中发现一般类型 能从较简单的题目的类型上即从不同的题目中发现一般类型 能从较简单的题目 过渡到相同类型较复杂的题目 以及怎样吧一种类型从表面上过渡到相同类型较复杂的题目 以及怎样吧一种类型从表面上 相似的其他类型的题目中区分出来 这样有助于在解决问题时 相似的其他类型的题目中区分出来 这样有助于在解决问题时 解题者也就能够迅速概括出所要解决的问题 发现和过去所熟解题者也就能够迅速概括出所要解决的问题 发现和过去所熟 悉的问题的相似之处 从而将解法平移过来 悉的问题的相似之处 从而将解法平移过来 逆转心理的能力 指的是重建一种心理过程的方向的能力 逆转心理的能力 指的是重建一种心理过程的方向的能力 即不仅取向而且取逆向 不仅从正面而且从反面 不仅从因到即不仅取向而且取逆向 不仅从正面而且从反面 不仅从因到 果 而且执果索因地进行分析 是问题得以解决 果 而且执果索因地进行分析 是问题得以解决 精品文档 19欢迎下载 小学数学解题过程 逆转心理过程还具体体现在正逆双方小学数学解题过程 逆转心理过程还具体体现在正逆双方 面的理解 思考和应用上 这样不仅有利于深入领会概念 公面的理解 思考和应用上 这样不仅有利于深入领会概念 公 式 法则 而且能达到解题迅速 简捷的目的 式 法则 而且能达到解题迅速 简捷的目的 灵活性又称变通性 爱因斯坦看成是创造你的典型特征 灵活性又称变通性 爱因斯坦看成是创造你的典型特征 在数学解题过程中 灵活性指的是解题思路的灵活转换盒迅速在数学解题过程中 灵活性指的是解题思路的灵活转换盒迅速 重组 重组 从认知心理学的角度看 所谓的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论