概率论试题及答案_第1页
概率论试题及答案_第2页
概率论试题及答案_第3页
概率论试题及答案_第4页
概率论试题及答案_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷一试卷一 一 填空 每小题一 填空 每小题 2 2 分 共分 共 1010 分 分 设是三个随机事件 则至少发生两个可表示为 掷一颗骰子 表示 出现奇数点 表示 点数不大于 3 则表示 已知互斥的两个事件满足 则 设为两个随机事件 则 设是三个随机事件 则至少发生一个的概率为 二 单项选择 每小题的四个选项中只有一个是正确答案 请将正确答案的番号填在括号内 每小题二 单项选择 每小题的四个选项中只有一个是正确答案 请将正确答案的番号填在括号内 每小题 2 2 分 共分 共 2020 分 分 1 从装有 2 只红球 2 只白球的袋中任取两球 记 取到 2 只白球 则 A 取到 2 只红球 B 取到 1 只白球 C 没有取到白球 D 至少取到 1 只红球 2 对掷一枚硬币的试验 出现正面 称为 A 随机事件 B 必然事件 C 不可能事件 D 样本空间 3 设 A B 为随机事件 则 A A B B C AB D 4 设和是任意两个概率不为零的互斥事件 则下列结论中肯定正确的是 A 与互斥 B 与不互斥 C D 5 设为两随机事件 且 则下列式子正确的是 A B C D 6 设相互独立 则 A B C D 7 设是三个随机事件 且有 则 A 0 1 B 0 6 C 0 8 D 0 7 8 进行一系列独立的试验 每次试验成功的概率为 p 则在成功 2 次之前已经失败 3 次的概率为 A p2 1 p 3 B 4 p 1 p 3 C 5 p 2 1 p 3 D 4 p 2 1 p 3 9 设 A B 为两随机事件 且 则下列式子正确的是 A B C D 10 设事件 A 与 B 同时发生时 事件 C 一定发生 则 A P A B P C B P A P B P C 1 C P A P B P C 1 D P A P B P C 三 计算与应用题 每小题三 计算与应用题 每小题 8 8 分 共分 共 6464 分 分 1 袋中装有 5 个白球 3 个黑球 从中一次任取两个 求求取到的两个球颜色不同的概率 2 10 把钥匙有 3 把能把门锁打开 今任取两把 求求能打开门的概率 3 一间宿舍住有 6 位同学 求求他们中有 4 个人的生日在同一个月份概率 4 50 个产品中有 46 个合格品与 4 个次品 从中一次抽取 3 个 求求至少取到一个次品的概率 5 加工某种零件 需经过三道工序 假定第一 二 三道工序的次品率分别为 0 2 0 1 0 1 并且任何一道工序是否 出次品与其它各道工序无关 求求该种零件的次品率 6 已知某品的合格率为 0 95 而合格品中的一级品率为 0 65 求求该产品的一级品率 7 一箱产品共 100 件 其中次品个数从 0 到 2 是等可能的 开箱检验时 从中随机抽取 10 件 如果发现有次品 则认为 该箱产品不合要求而拒收 若已知该箱产品已通过验收 求求其中确实没有次品的概率 8 某厂的产品 按甲工艺加工 按乙工艺加工 两种工艺加工出来的产品的合格率分别为 0 8 与 0 9 现 从该厂的产品中有放回地取 5 件来检验 求求其中最多有一件次品的概率 四 证明题 共四 证明题 共 6 6 分 分 设 证明 试卷一试卷一 参考答案参考答案 一 填空一 填空 1 或 2 出现的点数恰为 5 3 与互斥 则 4 0 6 故 5 至少发生一个 即为 又由 得 故 二 单项选择二 单项选择 1 2 A 3 A 利用集合的运算性质可得 4 与互斥 故 5 故 6 相互独立 7 且 则 8 9 B 10 B 故 P A P B P C 1 三 计算与应用题三 计算与应用题 1 解 设 表示 取到的两球颜色不同 则 而样本点总数 故 2 解 设 表示 能把门锁打开 则 而 故 3 解 设 表示 有 4 个人的生日在同一月份 则 而样本点总数为 故 4 解 设 表示 至少取到一个次品 因其较复杂 考虑逆事件 没有取到次品 则 包含的样本点数为 而样本点总数为 故 5 解 设 任取一个零件为次品 由题意要求 但较复杂 考虑逆事件 任取一个零件为正品 表示通过三道工序都合格 则 于是 6 解 设 表示 产品是一极品 表示 产品是合格品 显然 则 于是 即 该产品的一级品率为 7 解 设 箱中有 件次品 由题设 有 又设 该箱产品通过验收 由全概率公式 有 于是 8 解 依题意 该厂产品的合格率为 于是 次品率为 设 表示 有放回取 5 件 最多取到一件次品 则 四 证明题四 证明题 证明 由概率的性质知 则 又 且 故 试卷二试卷二 一 填空 每小题一 填空 每小题 2 2 分 共分 共 1010 分 分 1 若随机变量 的概率分布为 则 2 设随机变量 且 则 3 设随机变量 则 4 设随机变量 则 5 若随机变量的概率分布为 则 二 单项选择二 单项选择 每题的四个选项中只有一个是正确答案 请将正确答案的番号填在括号内 每小题每题的四个选项中只有一个是正确答案 请将正确答案的番号填在括号内 每小题 2 2 分 共分 共 2020 分分 1 设 与 分别是两个随机变量的分布函数 为使 是某一随机变量的分 布函数 在下列给定的各组数值中应取 A B C D 2 设随机变量的概率密度为 则 A B C D 3 下列函数为随机变量分布密度的是 A B C D 4 下列函数为随机变量分布密度的是 A B C D 5 设随机变量的概率密度为 则的概率密度为 A B C D 6 设服从二项分布 则 A B C D 7 设 则 A B C D 8 设随机变量的分布密度为 则 A 2 B 1 C 1 2 D 4 9 对随机变量来说 如果 则可断定不服从 A 二项分布 B 指数分布 C 正态分布 D 泊松分布 10 设为服从正态分布的随机变量 则 A 9 B 6 C 4 D 3 三 计算与应用题 每小题三 计算与应用题 每小题 8 8 分 共分 共 6464 分 分 1 盒内有 12 个乒乓球 其中 9 个是新球 3 个是旧球 采取不放回抽取 每次取一个 直到取到新球为止 求求抽取次数的概率分布 2 车间中有 6 名工人在各自独立的工作 已知每个人在 1 小时内有 12 分钟需用小吊车 求求 1 在同一时刻需用小吊车人数的最可能值是多少 2 若车间中仅有 2 台小吊车 则因小吊车不够而耽误工作的概率是多少 3 某种电子元件的寿命是随机变量 其概率密度为 求求 1 常数 2 若将 3 个这种元件串联在一条线路上 试计算该线路使用 150 小时后仍能正常工作的概率 4 某种电池的寿命 单位 小时 是一个随机变量 且 求求 1 这样的电池寿命在 250 小时以上的概率 2 使电池寿命在内的概率不小于 0 9 5 设随机变量 求求 概率密度 6 若随机变量服从泊松分布 即 且知 求求 7 设随机变量的概率密度为 求求 和 8 一汽车沿一街道行使 需要通过三个均没有红绿灯信号灯的路口 每个信号灯为红或绿与其他信号灯为红或绿相互独 立 求红或绿两种信号灯显示的时间相等 以表示该汽车未遇红灯而连续通过的路口数 求求 1 的概率分布 2 四 证明题 共四 证明题 共 6 分 分 设随机变量服从参数为 2 的指数分布 证明 在区间上 服从均匀分布 试卷二试卷二 参考答案参考答案 一 填空一 填空 1 6 由概率分布的性质有 即 得 2 则 3 0 5 4 5 0 25 由题设 可设 即 01 0 50 5 则 二 单项选择二 单项选择 1 由分布函数的性质 知 则 经验证只有满足 选 2 由概率密度的性质 有 3 由概率密度的性质 有 4 由密度函数的性质 有 5 是单减函数 其反函数为 求导数得 由公式 的密度为 6 由已知服从二项分布 则 又由方差的性质知 7 于是 8 A 由正态分布密度的定义 有 9 D 如果时 只能选择泊松分布 10 D X 为服从正态分布 N 1 2 EX 1 E 2X 1 3 三 计算与应用题三 计算与应用题 1 解 设为抽取的次数 只有个旧球 所以的可能取值为 由古典概型 有 则 1234 2 解 设 表示同一时刻需用小吊车的人数 则是一随机变量 由题意有 于是 1 的最可能值为 即概率达到最大的 2 3 解 1 由 可得 2 串联线路正常工作的充要条件是每个元件都能正常工作 而这里三个元件的工作是相互独立的 因此 若 用表示 线路正常工作 则 而 故 4 解 1 查正态分布表 2 由题意 即 查表得 5 解 对应的函数单调增加 其反函数为 求导数得 又由题设知 故由公式知 6 解 则 而 由题设知 即 可得 故 查泊松分布表得 7 解 由数学期望的定义知 而 故 8 解 1 的可能取值为且由题意 可得 即 0123 2 由离散型随机变量函数的数学期望 有 四 证明题四 证明题 证明 由已知 则 又由 得 连续 单调 存在反函数 且 当时 则 故 即 试卷三试卷三 一 填空 请将正确答案直接填在横线上 每小题一 填空 请将正确答案直接填在横线上 每小题 2 2 分 共分 共 1010 分 分 1 设二维随机变量的联合分布律为 则 2 设随机变量和相互独立 其概率分布分别为 则 3 若随机变量与相互独立 且 则 服从 分布 4 已知与相互独立同分布 且 则 5 设随机变量的数学期望为 方差 则由切比雪夫不等式有 二 单项选择二 单项选择 在每题的四个选项中只有一个是正确答案 请将正确答案的番号填在括号内 每小题在每题的四个选项中只有一个是正确答案 请将正确答案的番号填在括号内 每小题 2 2 分 共分 共 2020 分分 1 若二维随机变量的联合概率密度为 则系数 A B C D 2 设两个相互独立的随机变量和分别服从正态分布和 则下列结论正确的是 A B C D 3 设随机向量 X Y 的联合分布密度为 则 A X Y 服从指数分布 B X 与 Y 不独立 C X 与 Y 相互独立 D cov X Y 0 4 设随机变量相互独立且都服从区间 0 1 上的均匀分布 则下列随机变量中服从均匀分布的有 A B C D 5 设随机变量与随机变量相互独立且同分布 且 则下列各式中成立的是 A B C D 6 设随机变量的期望与方差都存在 则下列各式中成立的是 A B C D 7 若随机变量是的线性函数 且随机变量存在数学期望与方差 则与的相关系数 A B C D 8 设是二维随机变量 则随机变量与不相关的充要条件是 A B C D 9 设是个相互独立同分布的随机变量 则对于 有 A B C D 10 设 为独立同分布随机变量序列 且 Xi i 1 2 服从参数为 的指数分布 正态分布 N 0 1 的密度函数为 则 三 计算与应用题 每小题三 计算与应用题 每小题 8 8 分 共分 共 6464 分 分 1 将 2 个球随机地放入 3 个盒子 设表示第一个盒子内放入的球数 表示有球的盒子个数 求二维随机变量的联合概率分布 2 设二维随机变量的联合概率密度为 1 确定的值 2 求 3 设的联合密度为 1 求边缘密度和 2 判断与是否相互独立 4 设的联合密度为 求的概率密度 5 设 且与相互独立 求 1 的联合概率密度 2 3 6 设的联合概率密度为 求及 7 对敌人阵地进行 100 次炮击 每次炮击命中目标的炮弹的数学期望是 4 标准差是 1 5 求 100 次炮击中有 380 至 420 课炮弹命中目标的概率 8 抽样检查产品质量时 如果发现次品数多于 10 个 则认为这批产品不能接受 问应检查多少个产品才能使次品率为 10 的这批产品不被接受的概率达 0 9 四 证明题 共四 证明题 共 6 6 分 分 设随机变量的数学期望存在 证明随机变量与任一常数的协方差是零 试卷三试卷三 参考解答参考解答 一 填空一 填空 1 由联合分布律的性质及联合分布与边缘分布的关系得 2 3 相互独立的正态变量之和仍服从正态分布 且 4 5 二 单项选择二 单项选择 1 B 由 即 选择 B 2 B 由题设可知 故将标准化得 选择 B 3 C 选择 C 4 C 随机变量相互独立且都服从区间 0 1 上的均匀分布 则 选择 C 5 A 选择 A 6 A 由期望的性质知 选择 A 7 D 选择 D 8 B 与不相关的充要条件是 即 则 选择 B 9 C 选择 C 10 A Xi i 1 2 服从参数为 的指数分布 则 故 选择 A 三 计算与应用题三 计算与应用题 1 解解 显然的可能取值为 的可能取值为 注意到将个球随机的放入个盒子共有种放法 则有 即 的联合分布律为 2 解解 1 由概率密度的性质有 可得 2 设 则 3 解解 1 即 即 2 当时 故随机变量与不相互独立 4 解解 先求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论