




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
意想不到的磁性纳米材料外文文献 ReviewUnexpected magism in nanomaterialsRanberSinghnInstitute ofPhysical Chemistryand Centerfor ComputationalSciences,Johannes GutenbergUniversity Mainz,Staudingerweg9,D-55128Mainz,Germanya rt ic le in foArticle history:Received9AprilxxReceived inrevised form24JunexxAvailable online9JulyxxKeywords:Nanothinf i lmNanowireNanoparticleSingle moleculemagMagismSuperparamagismDefectSpintronica bs tr a c tConventionalmagic order in a material requiresthe partially f illed dor fbands.The exchangeinteractions between the electrons in these partiallyf illed bands give rise to a magic order.However,the discoveryof unexpected magism observed in somenanomaterials,which havethe d and f shellseither pletely empty or full,has challengedour understandingof magism in conventionalmaterials.The magism in nanomaterialsshows theeffects of reduced dimensions,reducedcoordination of atoms at the surface and somequantum effectswhich dominateat low dimensions.In thisreview paperwe givea briefreview anddiscuss theunexpected magismexperimentallyobserved and/or theoreticallypredicted in nanomaterials of conventional magicand nonmagicbulk materials.&xxElsevier B.V.All rightsreserved.1.IntroductionThe nanostructured materials are the criticalbuilding blocksforthe fastemerging f i eldof nanoscienceand nanotechnology.The uniquestructural,physical,electronic and magic propertiesof nanostructured materialsobserved in experiments and/or pre-dicted theoreticallyhave attractedgreat interestin these materialsin lastcouple of decades16.The uniqueand unusualpropertiesof nanostructuredmaterials as pared to their correspondingbulk counterparts aremainly due to theemergence ofquantumeffects atnanoscale.The properties ofnanostructuredmaterialsare stronglyinf l uenced by the f i nitesize andmicrostructuraldetails ofboth coreand surface6,7.There arethree mainapproacheswhich areapplied tocreate newnanomaterials: (1)top-down, (2)bottom-up,and (3)virtual approach.Top-down approachhas beenthe traditionalapproach for minia-turization vialithographic tools.Bottom-up approachis theself-assembly frommolecular-precursor buildingblocks in the chemi-cal solutions.Virtual approachtechnique is the oneused by theputational theoristswho createnew materials in thepu-ter simulations.The experimentaltechniques for the growth ofultrathin f i lms1,2and for the selectiveproduction andanalysisof atomianoclusters36have improveddramatically overthelast coupleofdecades.This advancementin growth techniquesand measurementtools has lead to the enormousadvancement inunderstanding the uniqueproperties of nanomaterials and theirpotential uses in theconstruction ofnanodevices.It is nowpossible to grow artif i cialmaterials witha controlledprecisionconsisting of alternating verythin crystallinelayers of differentmaterials.The propertiesof these materials aredetermined by thestructure of interfaces and the interactionsof atoms at theinterfaces.The unexpected magism appearsin somematerials whenone or moredimensions arereduced.The reduction in oneormore dimensionstypically resultsin thereduction ofcoordinationnumber of atoms whichreduce thehoping tendencyof electronsfromsite tosite.Thus,the kiic energy(bandwidth)of electronsisreduced andCoulomb interactions/bandwidth ratiois enhanced,which enhancesthe tendencytowards theappearance ofmag-ism inmaterials withreduced dimensions.The appearanceofsurface andinterface states due to the reducedsymmetry andchangedboundary conditionsplays an important role in inducingthemagism in the materials ofreduced dimensions.Thelocalized defectstatesdue to dopantsand/or vacanciesalso playan important role in localizingthe electronswhich inducecollec-tive ferromagism.In thispaper,we mainlyfocus on theunexpected magism in the materials when the reduceddimen-sions arein nanometer scale.With thereduction inoneormoredimensions to the nanometerscale the materials startsto displayquantif i ableproperties due to theemergence ofquantum effects,which inturn play an importantrolein inducing the ferromagicstate in thesematerials.For instance,conventional bulkmagicmaterials have different magic properties in the nanometerscaledue to the reducedcoordination of atom atthe surfaceandconf inement quantumeffects.Magism in nanomaterials(also known as nanomagism)is one of thescientif ic disciplinesattheforefront offast emergingf i eldsof nanoscienceand nanotechnology.Recent progressin theContentslists availableat SciVerseScienceDirectjournal homepage:.elsevier./locate/jmmmJournal ofMagism andMagic Materials0304-8853/$-see frontmatter&xxElsevier B.V.All rightsreserved.dx.doi/10.1016/j.jmmm.xx.07.005n Tel.:+4961313924720.E-mail address:ranber14yahoo.Journal ofMagism andMagic Materials346 (xx)5873growthtechniquesofnanomaterialsand observationtools formagismhas createdenormous interestin magianostruc-tures for fundamental explorationsas wellas variouspotentialapplications.The nanoparticles of the conventional magicmaterialshavedifferentmagic moments per atomand mag-ic anisotropyas pared to their bulkcounterparts35.The size ofamagic nanoparticleis sosmall thatit maycontainonly onedomain insteadof largenumber ofdomains in aconventional bulkspecimen.Because ofthis singledomain amagianoparticle canhave superparamagism810,where the spin ofwhole nanoparticlereverses underan externalperturbationf i eld.The heterostructuremagic nanothinf i lmsand nanowires havegiant magicresistance(GMR)1113andlarge magocaloriceffect14.The discoveryof GMR11,12(which hasbeen rewardedwithxxNobel Prizeto AlbertFertand PeterGrnberg,its discoverers)hasleadto thehighly densemagicinformation devices.The f i nitemagic momentsin somenanomaterials ofother-wise nonmagicbulk materialshave also been observedinexperiments1519and theoreticalcalculations2028.The unexpectedmagism observedin unconventionalmaterials,which havedandfshellspletelyemptyor pletelyfull,hasbeen attributedto the reduced dimensions,disorder anddefects29,30.The magic propertiesofnanostructuredmaterialsarealso affectedby the chemical position,shape,size andlocaldetails atthe coreand surfaceof thesample,and interactionswithsurrounding environment35,31.Magic nanomaterialsarethe idealcandidates formaking the spintronic devicesandrealization ofspin-qubits forquantum informationprocessing.Spintronic devicesare speculatedto usemagic momentorspin of electrons in addition to their chargeand wouldbe moreeff i cientfor sendingand storinginformation32,33.In thispaperwe brief l yreview anddiscuss theunexpected magismobservedexperimentally and/or predictedtheoretically in nanoma-terials ofconventional magicand nonmagicbulk materials.2.Theoretical understandingof magismBeforediscussing theunexpectedmagisminnanomaterials,we givea brief introduction to the theoreticalunderstanding ofmagismin differentmaterials.Magism isone of the oldestandmost fundamentalscientif ic problemsnot fullyunderstood tilldate.Aording toWebers classicaltheory of magism allsubstancesare posedof tinymolecular mags,which alignincertain directionsdepending upon the chemicalenvironment.In aferromagic materialmost of its molecularmags linedupso that they effectivelypoint inone direction.Aording to thedomain theoryof magismthere existmagic domainsin aferromagicmaterial.A magicdomain is a regionwithin amagicmaterial,which hasuniform magization.The regionsseparatingmagic domainsare called domain walls,where themagizationrotates smoothlyfrom thedirection inone domaintothat inthe nextdomain.The magicdomains have beenobserved inreal experimentalsamples34,35.Above Curietemperature,a pieceof ferromagicmaterial undergoesa phasetransitionto paramagicphase andthe uniformmagizationwithin adomain spontaneouslydisappears.Magic domainstructureis responsible forthe magic behaviorof ferromag-ic materialsof Fe,Ni,Co andtheir alloys,ferrites,etc.Modern theoriesof magismare based on the electron spin.The universalcriterion for ferromagism isvery diff i culttoformulate becauseof theplexity of exchange interactionsandthe existenceof hugevariety of the magicsubstancesand structures.The microscopicorigin offerromagism is thestrong electronelectron interactions.The electronswith parallelspinstend to avoid each other spatiallydue to the Paulis exclusionprinciple.This gives rise to the exchange interactions whichinturn leadto the magic phenomenaaording to the quantumtheoryof magism.The originofmagismlies inthe orbitalandspin motionsof electrons and howthe electrons interact withoneanother.The magicallyactive electronswhich formthemagic momentcan belocalized oritinerant collectively.The magisminnanomaterialsin practicealso dependon thedetailedenvironment andadditional interactionssuch asspinorbit,screening effectsand interactionswith ligandsattached tothe surface.Ising model36is thesimplest semi-classical modeltodescribe themagism asa cooperativeeffect.It is given asH?ij?I ijS iS j;?1?where?ij?indicates thesum overthe nearestneighbours.I ijis thespinspin interactionparameter.Latter worksof Heisenberg,Dirac,van Vleckand othersbased upon the quantumtheory haveattributedthe ferromagism to the alignment ofelectron spinsdue to exchangeforces.Spin,the intrinsicangular momentum,ofelectrons in atoms in a solidgive rise tothefinite magicmomentdepending uponthechemicalenvironment ofindividualatoms.If there isnocoupling between the individualatomic ormolecularmagic moments,thematerialis paramagic.However,if there is coupling between individualatomic ormolecularmagic momentsthematerialhas ferromagic orantiferromagic order.The coupling,which ispurely quantummechanicalin natureand isknown as exchange interaction,is duetothe overlap of electronic orbitals of different atomsandthe Paulis exclusionprinciple.In conventional magic materialsthe electrons inunf illed dor fbands areresponsibleforthemagic order.The exchange interactions between the electronsinthese partiallyfilled dorfbandsgive rise tothe magic orderof electronic spins.There arevarious models of exchange interac-tions proposedin differentmaterials whichgiverise toamagicorder in a material37,namely:2.1.Direct exchange interactionIt ourswhen there is adirect overlapbetweenthe localizedorbitals of electrons on adjacent magic ion sites.The simplestmodelfor thiskind ofinteractions is the Heisenbergmodel ofexchange interactions givenas38H ex?JijS i!?S j!;?2?where J is thestrength ofexchange couplingbetween S i andS jspins of electronsat sites i and j,respectively.The graphicalrepresentation(also known as Bethe-Slater curve39)of J asa function of interatomic distance and radius ofpartiallyfi lledd-shell ofan atomin differentmaterials isshown inFig.1(a).When theinteratomic distance is small the electronsspent mostofthe timein betweenthe atomsand giverise tothe antiferromag-icorder due tothe Paulis exclusionprinciple.However,whenthe interatomicdistanceislarge,theelectronsspent mostof thetimeaway fromeachotherand giverisetothe ferromagicorder.In realmaterials thedirect exchangeis drivenby minimiz-ingthepotential energyduetoreduced overlapof electronwavefunctions.Heisenberg typemodel isnot areasonable work-able modelat allinternuclear separations.Therefore,there areothermodels whichhave beenformulated toaount forthemagic statesobservedinthe materials where theinternuclearseparations areparatively large.R.Singh/Journal ofMagism andMagic Materials346 (xx)5873592.2.Superexchange interactionIt is an indirect exchange interaction40,41between thelocalizedelectrons onmagic ionsseparated by the nonmag-icion or ligand.The overlapof orbitalsof the localizedelectrons onthe magic sites ismediated through their monnonmagic ion orligand.It isgiven asHex?ij2t2ijUS i!?S j!;?3?where tij and U arethe hoppingenergy andCoulomb repulsionbetweensites iandj,respectively.The strength of couplingisdetermined bythe amountof hoppingenergy andCoulombrepulsion.The superexchange interaction inMnO isshown sche-matically inFig.1(b).2.3.Double exchangeinteractionThis kind ofexchangeinteraction issimilar tothe super-exchangeinteraction.In superexchangeinteraction there is nomovement ofelectronsfrom one magicsiteto othermagicsite because the oxidation states of magic ions are same ordiffer bytwo.However,in double exchangeinteraction there ismovementofelectronsfrom onemagic iontotheothermagic ionbecause oxidation states oftwo nearestneighbourmagic ions differs by onesee Fig.1(c).Double exchangeinteraction is also knownasZener exchangeinteraction42.It isbasedonthe assumption that intraatomicexchangeinterac-tionsbetweenlocalized spin and delocalizedspins arevery strongwhichaligns thespinsofdelocalized electronsalways paralleltothe localized ion spin.It isdescribed bythe Hamiltonian43givenasH ex?ijst ija?isajs?J HiS i!?si!;?4?where thefirst termdescribes themotion ofan electronover thelatticesitesi,j with spin s,andthesecond termaounts fortheHunds exchangecoupling.J His theHundsexchangecouplingparameter,S iis thelocalizedion spinandsiis thedelocalizedelectron spingiven assi?12ss?a?is P ss?a is?;?5?where a?is?a is?isthecreation(annihilation)operator andPs?s isavector ofPauli spinmatrices.This modelof doubleexchangeinteractions suessfullydescribed theferromagic phaseofmetallic manganites.It doesnot takeinto aountitinerantcharacter ofelectronsandFriedel oscillationsof theelectronpolarization aroundthelocalizedspin.These effectsare explicitlytaken into aountin RudermanKittelKasuyaYosida(RKKY)exchangeinteractionmodel.2.4.RKKY exchangeinteractionThe RKKYexchangeinteraction4446isthelong rangeexchangecouplingbetweenthelocalizedmagic momentsFig.1.Schematic illustrationofdifferentmodelsofexchange interactions.(a)Graphical representationof thestrengthofdirect exchangecoupling asa functionofinteratomic distance(r ab)andradius(rd)of theunf illed d-shell ofan atomina material.It isalsoknownas Bethe-Slater curve.(b)Superexchange interactions in MnOsystem.In thiskindofinteractiontheoxidationstatesof magic ionsaresameordiffer bytwo.(c)Double exchange interactions inMnO system.In thiskind interactiontheoxidationstatesof magicionsdifferbyone.In thesuperexchange anddoubleexchangeinteractions theoverlapoflocalized electronicorbitals onmagicion sites ismediatedthroughtheirmon nonmagicionorligand(O ion in caseof MnO).In doubleexchangeinteractiontheelectronsmove fromonemagicionsiteto theother,whereas in superexchangeinteractionthereisno suchmovementofelectrons.(d)The RKKYexchange parameterJasa functionof interatomicdistance ofmagicatoms.The magic order isferromagic or antiferromagic depending upontheinteratomicdistance between magicions.(e)Schematic bandstructure ofStonermodel.The exchangeinteractions havesplit theelectronic densityof states(EDOS)withspinup andspin downstates inamagicmetal.At Fermilevel theEDOS arespinpolarized whichgivesrisetotheferromagism inamaterial.R.Singh/Journal ofMagism andMagic Materials346 (xx)587360mediated bythe conduction electronsinmetals.It isgiven asHex?ijJ2k Fcos?2k F?sin?2k F?2k?4Si!?S j!;?6?where?r ab?isthedistancebetweenthe interactingmagic ionsaand b,Jisthe interactionparameter which depends ontheeffective massof theconductionelectrons,and kF isthe Fermiwavevector of theelectrongas.It isthe dominantexchangeinteraction inmetals wherethereislittle orno directoverlapbetween theelectronicorbitalsof neighboringmagicions.A localizedionspinpolarizes thespin ofsurrounding conductionelectronswhich actas aneffective fi eldto influencethe polariza-tionofnearby localizedion spinswith thepolarization decayinginan oscillatorymannersee Fig.1(d).This oscillationmediateseither ferromagicorantiferromagicexchange couplingdependingupontheseparation betweenthe magicions.Thiskind ofexchangeinteractionsbees effi cientwhenthenumberof conductionelectrons islarge.It suessfullydescribed theGMRin magichetrostructures47.2.5.Stoner modelTheparallel alignmentoftheelectronicspinsleads toa gainofexchange energy.However,thealignmentalso causesa lossofkiic energy.Most ofthe solidstate systemsare non-magic,since thegain inexchange energyis dominatedbytheloss inkiicenergy.Aording toband theoryof solidsthe onsetofferromagism inamaterialis determinedbytheso-calledStoner criterionsee Fig.1(e),which isassociated witha peti-tion betweenexchange energyand kiicenergy effects48.None ofthesp-bonded elementsare magicin theirbulkcrystalline phasebecausethekiicenergydominates theexchangeenergy inthesematerials.The tendencytowards mag-isminnanomaterials ofmagicornonmagic materialsisconsiderably enhancedduetothereduceddimensions,defectsand reducedcoordination of atoms atthe surfaceor interface17,18,47,4959.There aresome modelHamiltonians developedtounderstand themagisminconventional delectron systemsandunconventional spelectron systems.The simplestmodel isthemean fi eldHubbard model21which isdescribed bytheHamiltonian(H mfi eld)given asH mfield?Ui?ni?ni?ni?ni?ni?ni?:?7?The resultingmagnitude ofmagic moment(M)inasystemdescribed byHmfieldisgivenasM?ij?ni?ni?j2;?8?where nis isthespinpolarized densityat sitei withspin sandUisthe magnitudeof on-site Coulombrepulsion.Conventionally thepartiallyfilleddorfstates giverisetononzero magic momentin amaterial.However,a newferromagic statehas beenobservedin somematerialswhered-orf-states haveno con-tribution in inducing themagic momentrather it is inducedbythe s-or p-states.This newstate ofmagism isknownasd0magismtoindicate thatthemagic moments resideins-orp-states.3.Magism innanomaterialsMagic materialsare usedin largenumber ofdaily lifeapplicationssuch asin switches,televisions,audio devices,motors,credit/debit/ATM cards,magic resonanceimaging(MRI)equipments,puter hard drives,etc.Some of theseapplications suchas puterharddriveshave leadto theminiaturizationof singlemagic unitsto increasethe densityofdata storageinagiven space.The magismin nanomaterialscanbe manipulatedvia size and growingthe artifi cialstructureswhich donot existin nature.The nanomaterialsare broadlyputinto threecategorie
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京租赁合同范本
- 2025跨国购销合同范本
- 2025短期雇佣安保人员合同范本模板
- 2025国际航空货物运输合同
- 医院药房抗生素考试试题及答案
- 厨师一级考试题目及答案
- 灵璧期中考试试卷及答案
- 护理学专业考试模拟题及答案
- 太原市二模考试题及答案
- 人类懒惰模拟考试题及答案
- 2025年秋人教版(2024)初中数学八年级第一学期教学计划及教学进度表
- 纺织企业安全生产知识培训
- 小区物业合伙管理协议书
- 2025年全国小学生“学宪法、讲宪法”活动知识竞赛题库及答案
- 小学心理健康教育四级预警汇报流程
- 软件行业基础知识培训课件
- 教案2025秋形势与政策纪念抗战胜利坚定民族信念抗战胜利80周年
- 卷烟零售户培训课件
- 2025年学法减分试题及答案
- 财政专题分析报告:财政数据背后的宏观线索-国金证券
- 《智能建造概论》高职完整全套教学课件
评论
0/150
提交评论