已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2LinearTime InvariantSystems 2 1Discrete timeLTIsystem Theconvolutionsum 2 1 1TheRepresentationofDiscrete timeSignalsinTermsofImpulses 2 LinearTime InvariantSystems Ifx n u n then 2LinearTime InvariantSystems 2LinearTime InvariantSystems 2 1 2TheDiscrete timeUnitImpulseResponseandtheConvolutionSumRepresentationofLTISystems 1 UnitImpulse Sample Response UnitImpulseResponse h n 2LinearTime InvariantSystems 2 ConvolutionSumofLTISystem Solution Question n h n n k h n k x k n k x k h n k 2LinearTime InvariantSystems 2LinearTime InvariantSystems 2LinearTime InvariantSystems ConvolutionSum So ory n x n h n 3 CalculationofConvolutionSum TimeInversal h k h k TimeShift h k h n k Multiplication x k h n k Summing Example2 12 22 32 42 5 2LinearTime InvariantSystems 2 2Continuous timeLTIsystem Theconvolutionintegral 2 2 1TheRepresentationofContinuous timeSignalsinTermsofImpulses Define Wehavetheexpression Therefore 2LinearTime InvariantSystems 2LinearTime InvariantSystems or 2LinearTime InvariantSystems 2 2 2TheContinuous timeUnitimpulseResponseandtheconvolutionIntegralRepresentationofLTISystems 1 UnitImpulseResponse 2 TheConvolutionofLTISystem 2LinearTime InvariantSystems A Becauseof So wecanget ConvolutionIntegral ory t x t h t 2LinearTime InvariantSystems B ory t x t h t ConvolutionIntegral 2LinearTime InvariantSystems 2LinearTime InvariantSystems 3 ComputationofConvolutionIntegral TimeInversal h h TimeShift h h t Multiplication x h t Integrating Example2 62 8 2LinearTime InvariantSystems 2 3PropertiesofLinearTimeInvariantSystem Convolutionformula 2LinearTime InvariantSystems 2 3 1TheCommutativeProperty Discretetime x n h n h n x n Continuoustime x t h t h t x t 2LinearTime InvariantSystems 2 3 2TheDistributiveProperty Discretetime x n h1 n h2 n x n h1 n x n h2 n Continuoustime x t h1 t h2 t x t h1 t x t h2 t Example2 10 2LinearTime InvariantSystems 2 3 3TheAssociativeProperty Discretetime x n h1 n h2 n x n h1 n h2 n Continuoustime x t h1 t h2 t x t h1 t h2 t 2LinearTime InvariantSystems 2 3 4LTIsystemwithandwithoutMemory Memorylesssystem Discretetime y n kx n h n k n Continuoustime y t kx t h t k t Implythat x t t x t andx n n x n 2LinearTime InvariantSystems 2 3 5InvertibilityofLTIsystem Originalsystem h t Reversesystem h1 t So fortheinvertiblesystem h t h1 t t orh n h1 n n Example2 112 12 2LinearTime InvariantSystems 2 3 6CausalityforLTIsystem Discretetimesystemsatisfythecondition h n 0forn 0Continuoustimesystemsatisfythecondition h t 0fort 0 2LinearTime InvariantSystems 2 3 7StabilityforLTIsystem Definitionofstability Everyboundedinputproducesaboundedoutput Discretetimesystem If x n B theconditionfor y n Ais 2LinearTime InvariantSystems Continuoustimesystem If x t B theconditionfor y t Ais Example2 13 2LinearTime InvariantSystems 2 3 8TheUnitStepResponseofLTIsystem Discretetimesystem Continuoustimesystem 2LinearTime InvariantSystems 2 4CausalLTISystemsDescribedbyDifferentialandDifferenceEquation Discretetimesystem DifferentialEquationContinuoustimesystem DifferenceEquation 2LinearTime InvariantSystems 2 4 1LinearConstant CoefficientDifferentialEquation AgeneralNth orderlinearconstant coefficientdifferentialequation or andinitialcondition y t0 y t0 y N 1 t0 Nvalues 2LinearTime InvariantSystems 2 4 2LinearConstant CoefficientDifferenceEquation AgeneralNth orderlinearconstant coefficientdifferenceequation or andinitialcondition y 0 y 1 y N 1 Nvalues Example2 15 2LinearTime InvariantSystems 2 4 3BlockDiagramRepresentationsofFirst orderSystemsDescribedbyDifferentialandDifferenceEquation 1 DicretetimesystemBasicelements A AnadderB MultiplicationbyacoefficientC Anunitdelay 2LinearTime InvariantSystems Basicelements 2LinearTime InvariantSystems Example y n ay n 1 bx n 2LinearTime InvariantSystems 2 ContinuoustimesystemBasicelements A AnadderB MultiplicationbyacoefficientC An differentiator integrator 2LinearTime InvariantSystems Basicelements 2LinearTime InvariantSystems Example y t ay t bx t 2Lin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 砼窗施工方案
- 温泉勘察施工方案
- 巫溪地毯施工方案
- 建设工程bot合同范本
- 小区电缆施工合同范本
- 日本器皿采购合同范本
- 微服务观测系统设计-洞察与解读
- 南京租房确认合同范本
- 景区运营合同范本
- 庙岭租房合同范本
- 2025河北秦皇岛市抚宁区为乡镇街道和区直单位选调全额事业人员68人笔试考试备考试题及答案解析
- 中小学英语衔接教学策略
- 015《煤矿安全规程》修改条款学习辅导:第十五讲 电气
- 水电站消防安全培训课件
- 2025年中石油考试题大全及答案
- 湖北省黄石市十四中2025年十月质量监测九年级语文试卷(含答案)
- 纯水储罐清洗施工方案
- 北京中医药大学《中医基础理论》期中考试试卷(含答案)
- 油库施工冬季施工方案
- 我国农业数字化技术发展现状与数字经济发展策略
- DB5133∕T 74-2023 甘孜藏餐 通 用规范
评论
0/150
提交评论