椭圆知识点总结_第1页
椭圆知识点总结_第2页
椭圆知识点总结_第3页
椭圆知识点总结_第4页
椭圆知识点总结_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

椭圆知识点总结 椭圆公式知识是高中数学中比较重要的一项知识要点,要想掌握椭圆知识点,就要不断努力了。下面是小编给大家整理的椭圆公式知识点,希望能对你有帮助!椭圆公式知识点篇一集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用平面向量:有关概念与初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用排列、组合和概率:排列、组合应用题、二项式定理及其应用概率与统计:概率、分布列、期望、方差、抽样、正态分布导数:导数的概念、求导、导数的应用复数:复数的概念与运算椭圆公式知识点篇二正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c22accosB注:角B是边a和边c的夹角圆的标准方程(xa)2+(yb)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E24F0抛物线标准方程y2=2pxy2=2pxx2=2pyx2=2py直棱柱侧面积S=c*h斜棱柱侧面积S=c*h正棱锥侧面积S=1/2c*h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=p*r2h乘法与因式分a2b2=(a+b)(ab)a3+b3=(a+b)(a2ab+b2)a3b3=(ab(a2+ab+b2)三角不等式|a+b|a|+|b|ab|a|+|b|a|b=bab|ab|a|b|a|a|a|一元二次方程的解b+(b24ac)/2ab(b24ac)/2a根与系数的关系X1+X2=b/aX1*X2=c/a注:韦达定理判别式b24ac=0注:方程有两个相等的实根b24ac0注:方程有两个不等的实根b24ac0注:方程没有实根,有共轭复数根椭圆公式知识点篇三两角和公式sin(A+B)=sinAcosB+cosAsinBsin(AB)=sinAcosBsinBcosAcos(A+B)=cosAcosBsinAsinBcos(AB)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1tanAtanB)tan(AB)=(tanAtanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB1)/(ctgB+ctgA)ctg(AB)=(ctgActgB+1)/(ctgBctgA)倍角公式tan2A=2tanA/(1tan2A)ctg2A=(ctg2A1)/2ctgacos2a=cos2asin2a=2cos2a1=12sin2a半角公式sin(A/2)=(1cosA)/2)sin(A/2)=(1cosA)/2)cos(A/2)=(1+cosA)/2)cos(A/2)=(1+cosA)/2)tan(A/2)=(1cosA)/(1+cosA)tan(A/2)=(1cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1cosA)ctg(A/2)=(1+cosA)/(1cosA)和差化积2sinAcosB=sin(A+B)+sin(AB)2cosAsinB=sin(A+B)sin(AB)2cosAcosB=cos(A+B)sin(AB)2sinAsinB=cos(A+B)cos(AB)sinA+sinB=2sin(A+B)/2)cos(AB)/2cosA+cosB=2cos(A+B)/2)sin(AB)/2)tanA+tanB=sin(A+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论