中考数学二模试卷(含解析)591.doc_第1页
中考数学二模试卷(含解析)591.doc_第2页
中考数学二模试卷(含解析)591.doc_第3页
中考数学二模试卷(含解析)591.doc_第4页
中考数学二模试卷(含解析)591.doc_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西师范大学附中2016年中考数学二模试卷一、选择题(共10小题,每小题3分,计30分)12016的倒数是()A2016B2016CD2如图所示,下列选项中,正六棱柱的左视图是()ABCD3当x取任意实数时,等式(x+2)(x1)=x2+mx+n恒成立,则m+n的值为()A1B2C14如图,将一副三角板的直角顶点重合平放,若AOD=35,则BOC为()A35B45C55D655直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A(4,0)B(1,0)C(0,2)D(2,0)6如图,已知AB是O直径,AOC=130,则D等于()A65B25C15D357如图,直线y=x+2与x轴、y轴分别交于A、B两点,把AOB沿直线AB翻折后得到AOB,则点O的坐标是()A(,3)B(,)C(2,2)D(2,4)8如图A,B两点分别在反比例函数y=(x0)和y=(k0,x0)的图象上,连接OA、OB,若OAOB,OB=2OA,则k的值为()A2B2C4D49如图,O的半径为1,ABC是O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A2BCD10函数y=x2+bx+c与y=x的图象如图所示,有以下结论:b24c0;b+c+1=0;3b+c+6=0;当1x3时,x2+(b1)x+c0其中正确的个数为()A1个B2个C3个D4个二、填空题(共4小题,每小题3分,计12分)11分解因式:ax34ax=_12关于x的一元二次方程(a1)x22x+3=0有实数根,则整数a的最大值是_13请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分A在平面直角坐标系中,将点A(1,1)向左平移4个单位长度得到点,点关于x轴对称点的坐标是_B半径为2cm的圆内接正五边形的边长为_cm(用科学计算器计算,结果精确到0.01)14如图,点C在以AB为直径的半圆上,AB=8,CBA=30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F则线段EF的最小值为_三、解答题(共11小题,计78分.解答应写出过程)15计算:16先化简,再求值:,其中a=117如图,已知ABC,用尺规作出ABC重心(保留作图痕迹,不写作法)18某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有_名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?19已知,如图所示,AB=AC,BD=CD,DEAB于点E,DFAC于点F,求证:DE=DF20如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号已知A、B两船相距100(+1)海里,船C在船A的北偏东60方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75方向上(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号)(2)已知距观测点D处100海里范围内有暗礁若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:1.41,1.73)21新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第8层楼房售价为4000元/平方米,从第8层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房的面积均为120平方米若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送(1)请写出售价y(元/平方米)与楼层x(1x23,x取整数)之间的函数解析式;(2)老王要购买第16层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算22甲、乙两人用手指玩游戏,规则如下:每次游戏时,两人同时随机地各伸出一根手指;两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率23如图在RtABC中,C=90,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且CBD=A;(1)判断直线BD与O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长24(10分)(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标25(12分)(2016陕西校级二模)问题探索:(1)如图1,已知四边形ABCD中,AB=a,BC=b,B=D=90,求:对角线BD长度的最大值;四边形ABCD的最大面积;(用含有a,b的代数式表示)(2)如图2,四边形ABCD是某市规划用地示意图,经测量得到如下数据:AB=20cm,BC=30cm,B=120,A+C=195,请你用所学到的知识探索出它的最大面积,并说明理由(结果保留根号)2016年陕西师范大学附中中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)12016的倒数是()A2016B2016CD【考点】倒数【分析】直接利用倒数的定义分析得出答案【解答】解:2016的倒数是故选D【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键2如图所示,下列选项中,正六棱柱的左视图是()ABCD【考点】简单几何体的三视图【分析】找到从左面看所得到的图形即可【解答】解:从左面看可得到左右相邻的2个长方形,故选B【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;本题需注意左视图中只能看到正六棱柱的两个面3当x取任意实数时,等式(x+2)(x1)=x2+mx+n恒成立,则m+n的值为()A1B2C1【考点】多项式乘多项式【分析】根据多项式乘多项式的运算方法,将(x+2)(x1)展开,再根据(x+2)(x1)=x2+mx+n恒成立,求出m+n的值为多少即可【解答】解:(x+2)(x1)=x2+x2,(x+2)(x1)=x2+mx+n恒成立,m=1,n=2,m+n=12=1故选:C【点评】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键4如图,将一副三角板的直角顶点重合平放,若AOD=35,则BOC为()A35B45C55D65【考点】余角和补角【分析】根据互余两角之和等于90,进行求解即可【解答】解:AOD=35,COA=90,BOD=90,且AOD+COD=COD+BOC=90,AOD=BOC=35故选A【点评】本题考查了余角和补角的知识,解答本题的关键在于熟练掌握互余两角之和等于905直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A(4,0)B(1,0)C(0,2)D(2,0)【考点】一次函数图象与几何变换【分析】根据平移可得直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+26=2x4,再求出与x轴的交点即可【解答】解:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+26=2x4,当y=0时,x=2,因此与x轴的交点坐标是(2,0),故选:D【点评】此题主要考查了一次函数与几何变换,关键是计算出平移后的函数解析式6如图,已知AB是O直径,AOC=130,则D等于()A65B25C15D35【考点】圆周角定理【分析】根据邻补角的定义求出BOC的度数,根据圆周角定理解答即可【解答】解:AOC=130,BOC=50,D=BOC=25,故选:B【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键7如图,直线y=x+2与x轴、y轴分别交于A、B两点,把AOB沿直线AB翻折后得到AOB,则点O的坐标是()A(,3)B(,)C(2,2)D(2,4)【考点】翻折变换(折叠问题);一次函数的性质【分析】作OMy轴,交y于点M,ONx轴,交x于点N,由直线y=x+2与x轴、y轴分别交于A、B两点,求出B(0,2),A(2,0),和BAO=30,运用直角三角形求出MB和MO,再求出点O的坐标【解答】解:如图,作OMy轴,交y于点M,ONx轴,交x于点N,直线y=x+2与x轴、y轴分别交于A、B两点,B(0,2),A(2,0),BAO=30,由折叠的特性得,OB=OB=2,ABO=ABO=60,MB=1,MO=,OM=3,ON=OM=,O(,3),故选:A【点评】本题主要考查了折叠问题及一次函数问题,解题的关键是运用折叠的特性得出相等的角与线段8如图A,B两点分别在反比例函数y=(x0)和y=(k0,x0)的图象上,连接OA、OB,若OAOB,OB=2OA,则k的值为()A2B2C4D4【考点】反比例函数图象上点的坐标特征【分析】过A、B分别作x轴的垂线,垂足分别为E、F,先证得AEOOFB,根据相似三角形的性质得出OF=2AE,BF=2OE,设A(a,b),代入y=得出ab=1,因为OE=a,AE=b,所以AEOE=ab=1,设B(x,y),则OF=x,BF=y,即可求得k=xy=4【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、FOAOB,AOE+BOF=90,AOE+OAE=90,OAE=BOF,AEO=OFB=90,AEOOFB,=,OF=2AE,BF=2OE,OFBF=2AE2OE=4AEOE,A点在反比例函数y=上,设A(a,b),k=ab=1,OE=a,AE=b,AEOE=ab=1,设B(x,y),OF=x,BF=y,OFBF=4,k=xy=4故选D【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数y=(k0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|9如图,O的半径为1,ABC是O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A2BCD【考点】垂径定理;等边三角形的性质;矩形的性质;解直角三角形【分析】连接BD、OC,根据矩形的性质得BCD=90,再根据圆周角定理得BD为O的直径,则BD=2;由ABC为等边三角形得A=60,于是利用圆周角定理得到BOC=2A=120,易得CBD=30,在RtBCD中,根据含30的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解【解答】解:连结BD、OC,如图,四边形BCDE为矩形,BCD=90,BD为O的直径,BD=2,ABC为等边三角形,A=60,BOC=2A=120,而OB=OC,CBD=30,在RtBCD中,CD=BD=1,BC=CD=,矩形BCDE的面积=BCCD=故选:B【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理、等边三角形的性质和矩形的性质10函数y=x2+bx+c与y=x的图象如图所示,有以下结论:b24c0;b+c+1=0;3b+c+6=0;当1x3时,x2+(b1)x+c0其中正确的个数为()A1个B2个C3个D4个【考点】二次函数图象与系数的关系【分析】由函数y=x2+bx+c与x轴无交点,可得b24c0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1x3时,二次函数值小于一次函数值,可得x2+bx+cx,继而可求得答案【解答】解:函数y=x2+bx+c与x轴无交点,b24ac0;故错误;当x=1时,y=1+b+c=1,故错误;当x=3时,y=9+3b+c=3,3b+c+6=0;正确;当1x3时,二次函数值小于一次函数值,x2+bx+cx,x2+(b1)x+c0故正确故选B【点评】主要考查图象与二次函数系数之间的关系关键是注意掌握数形结合思想的应用二、填空题(共4小题,每小题3分,计12分)11分解因式:ax34ax=ax(a+2)(a2)【考点】提公因式法与公式法的综合运用【分析】原式提取ax,再利用平方差公式分解即可【解答】解:原式=ax(x24)=ax(x+2)(x2),故答案为:ax(a+2)(a2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键12关于x的一元二次方程(a1)x22x+3=0有实数根,则整数a的最大值是0【考点】根的判别式;一元二次方程的定义【分析】根据一元二次方程的定义和判别式的意义得到a10且=(2)24(a1)30,再求出两不等式的公共部分得到a且a1,然后找出此范围内的最大整数即可【解答】解:根据题意得a10且=(2)24(a1)30,解得a且a1,所以整数a的最大值为0故答案为0【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程的定义13请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分A在平面直角坐标系中,将点A(1,1)向左平移4个单位长度得到点,点关于x轴对称点的坐标是(5,1)B半径为2cm的圆内接正五边形的边长为2.35cm(用科学计算器计算,结果精确到0.01)【考点】正多边形和圆;关于x轴、y轴对称的点的坐标;坐标与图形变化-平移【分析】A直接利用平移的性质得出A点平移后位置,进而利用关于x轴对称点的性质得出答案;B利用正五边形的性质得出AO,以及AOC的度数,再利用锐角三角函数关系以及结合计算器求出答案【解答】解:A将点A(1,1)向左平移4个单位长度得到点(5,1),点(5,1)关于x轴对称点的坐标是:(5,1);故答案为:(5,1);B如图所示:过点O作OCAB于点C,如图是半径为2cm的圆内接正五边形,OB=OA=2cm,AOB=72,则AOC=36,故AC=sin36AO1.1755(cm),则AB=21.17552.35(cm)故答案为:2.35【点评】此题主要考查了关于x轴对称点的性质以及正多边形和圆,正确掌握正五边形的性质是解题关键14如图,点C在以AB为直径的半圆上,AB=8,CBA=30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F则线段EF的最小值为4【考点】圆的综合题【分析】根据“点到直线之间,垂线段最短”可得CDAB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值【解答】解:连接CD,当CDAB时,CD取得最小值,AB是半圆的直径,ACB=90AB=8,CBA=30,AC=4,BC=4CDAB,CBA=30,CD=BC=2根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2CE=CD=CF,EF=2CD线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型三、解答题(共11小题,计78分.解答应写出过程)15计算:【考点】实数的运算;零指数幂;负整数指数幂【分析】首先利用绝对值的性质以及结合负整数指数幂的性质、零指数幂的性质分别化简,进而求出答案【解答】解:原式=9+213+2=9【点评】此题主要考查了实数运算,正确掌握相关运算法则是解题关键16先化简,再求值:,其中a=1【考点】分式的化简求值【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值【解答】解:原式=a(a2),当a=1时,原式=1(3)=3【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键17如图,已知ABC,用尺规作出ABC重心(保留作图痕迹,不写作法)【考点】作图复杂作图;三角形的重心【分析】作AB的垂直平分线得到AB的中点D,作AC的垂直平分线得到AC的中点E,连结CD和BE,它们相交于点O,则点O满足条件【解答】解:如图,点O为所作【点评】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作掌握三角形重心的定义18某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可【解答】解:(1)这次被调查的同学共有40040%=1000(名);故答案为:1000;(2)剩少量的人数是;1000400250150=200,补图如下;(3)18000=3600(人)答:该校18000名学生一餐浪费的食物可供3600人食用一餐【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小19已知,如图所示,AB=AC,BD=CD,DEAB于点E,DFAC于点F,求证:DE=DF【考点】全等三角形的判定与性质;角平分线的性质【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到EAD=FAD,即AD为角平分线,再由DEAB,DFAC,利用角平分线定理即可得证【解答】证明:连接AD,在ACD和ABD中,ACDABD(SSS),EAD=FAD,即AD平分EAF,DEAE,DFAF,DE=DF【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键20如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号已知A、B两船相距100(+1)海里,船C在船A的北偏东60方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75方向上(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号)(2)已知距观测点D处100海里范围内有暗礁若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:1.41,1.73)【考点】解直角三角形的应用-方向角问题【分析】(1)作CEAB,设AE=x海里,则BE=CE=x海里根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DFAC于点F,同理求出AD的长;(2)作DFAC于点F,根据AD的长和DAF的度数求线段DF的长后与100比较即可得到答案【解答】解:(1)如图,作CEAB,由题意得:ABC=45,BAC=60,设AE=x海里,在RtAEC中,CE=AEtan60=x;在RtBCE中,BE=CE=xAE+BE=x+x=100(+1),解得:x=100AC=2x=200在ACD中,DAC=60,ADC=75,则ACD=45过点D作DFAC于点F,设AF=y,则DF=CF=y,AC=y+y=200,解得:y=100(1),AD=2y=200(1)答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(1)海里(2)由(1)可知,DF=AF=100(1)126.3海里,126.3100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答21新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第8层楼房售价为4000元/平方米,从第8层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房的面积均为120平方米若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送(1)请写出售价y(元/平方米)与楼层x(1x23,x取整数)之间的函数解析式;(2)老王要购买第16层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算【考点】一次函数的应用【分析】(1)根据题意分别求出当1x8时,每平方米的售价应为4000(8x)30元,当9x23时,每平方米的售价应为4000+(x8)50元;(2)根据购买方案一、二求出实交房款的关系式,然后分情况讨论即可确定那种方案合算【解答】解:(1)当1x8时,y=400030(8x)=4000240+30 x=30 x+3760;当8x23时,y=4000+50(x8)=4000+50 x400=50 x+3600所求函数关系式为(2)当x=16时,方案一每套楼房总费用:w1=120(5016+3600)92%a=485760a;方案二每套楼房总费用:w2=120(5016+3600)90%=475200当w1w2时,即485760a475200时,a10560;当w1=w2时,即485760a=475200时,a=10560;当w1w2时,即485760a475200时,a10560因此,当每套赠送装修基金多于10560元时,选择方案一合算;当每套赠送装修基金等于10560元时,两种方案一样;当每套赠送装修基金少于10560元时,选择方案二合算【点评】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键22甲、乙两人用手指玩游戏,规则如下:每次游戏时,两人同时随机地各伸出一根手指;两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率【考点】列表法与树状图法【分析】(1)直接求出甲伸出小拇指取胜的概率;(2)首先根据题意画出表格,由表格求得所有等可能的结果,即可得出乙取胜的概率;【解答】解;(1)甲伸出小拇指的可能一共有5种,甲伸出小拇指取胜只有一种可能,故P(甲伸出小拇指获胜)=;(2)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:甲乙ABCDEAAAABACADAEBBABBBCBDBECCACBCCCDCEDDADBDCDDDEEEAEBECEDEE由表格可知,共有25种等可能的结果,乙取胜有5种可能,故P(乙获胜)=【点评】此题考查的是用列表法或树状图法求概率注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比23如图在RtABC中,C=90,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且CBD=A;(1)判断直线BD与O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长【考点】直线与圆的位置关系;直角三角形的性质;相似三角形的判定与性质【分析】(1)结论:BD是圆的切线,已知此线过圆O上点D,连接圆心O和点D(即为半径),再证垂直即可;(2)通过作辅助线,根据已知条件求出CBD的度数,在RtBCD中求解即可【解答】解:(1)直线BD与O相切(1分)证明:如图,连接ODOA=ODA=ADOC=90,CBD+CDB=90又CBD=AADO+CDB=90ODB=90直线BD与O相切(2分)(2)解法一:如图,连接DEAE是O的直径,ADE=90AD:AO=8:5cosA=AD:AE=4:5(3分)C=90,CBD=A cosCBD=BC:BD=4:5(4分)BC=2,BD=;解法二:如图,过点O作OHAD于点HAH=DH=ADAD:AO=8:5cosA=AH:AO=4:5(3分)C=90,CBD=AcosCBD=BC:BD=4:5,BC=2,BD=【点评】本题考查了直线和圆的位置关系、直角三角形的性质以及相似三角形的判定和性质24(10分)(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标【考点】二次函数综合题【分析】(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出ABN的面积S2=5,则S1=6S2=30再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形证明EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(1,0),运用待定系数法求出直线PQ的解析式为y=x1,然后解方程组,即可求出点P的坐标【解答】解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x26x+5;(2)设M(x,x26x+5)(1x5),则N(x,x+5),MN=(x+5)(x26x+5)=x2+5x=(x)2+,当x=时,MN有最大值;(3)方法一:MN取得最大值时,x=2.5,x+5=2.5+5=2.5,即N(2.5,2.5)解方程x26x+5=0,得x=1或5,A(1,0),B(5,0),AB=51=4,ABN的面积S2=42.5=5,平行四边形CBPQ的面积S1=6S2=30设平行四边形CBPQ的边BC上的高为BD,则BCBDBC=5,BCBD=30,BD=3过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形BCBD,OBC=45,EBD=45,EBD为等腰直角三角形,BE=BD=6,B(5,0),E(1,0),设直线PQ的解析式为y=x+t,将E(1,0)代入,得1+t=0,解得t=1直线PQ的解析式为y=x1解方程组,得,点P的坐标为P1(2,3)(与点D重合)或P2(3,4)方法二:MN取得最大值时,x=2.5,x+5=2.5+5=2.5,即N(2.5,2.5)解方程x26x+5=0,得x=1或5,A(1,0),B(5,0),AB=51=4,ABN的面积S2=42.5=5,平行四边形CBPQ的面积S1=6S2=30SBCP=S1,该问题等价于在抛物线上找到一点P,使得SBCP=15,过点P作x轴垂线交直线BC于点H,设P(t,t26t+5),H(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论