




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弹塑性力学本构关系 附加应力对附加应变负做功 即 附加应力对附加应变做功为非负 即有 1 稳定材料与非稳定材料 稳定材料 非稳定材料 应变硬化和理想塑性材料 应变软化材料 德鲁克公设和依留申公设是传统塑性力学的基础 它把塑性势函数与屈服函数紧密联系在一起 德鲁克公设只适用于稳定材料 而依留申既适用于稳定材料 又适用于不稳定材料 2 德鲁克塑性公设的表述 德鲁克公设可陈述为 对于处在某一状态下的稳定材料的质点 试件 借助于一个外部作用在其原有应力状态之上 缓慢地施加并卸除一组附加压力 在附加应力的施加和卸除循环内 外部作用所作之功是非负的 设材料单元体经历任意应力历史后 在应力 ij0下处于平衡 即开始应力 ij0在加载面内 然后在单元体上缓慢地施加一个附加力 使 ij0达到 ij 刚好在屈服面上 再继续加载到 ij d ij 在这一阶段 将产生塑性应变d ijp 最后应力又卸回到 ij0 若整个应力循环过程中 附加应力d ij所作的塑性功不小于零 即附加应力的塑性功不出现负值 则这种材料就是稳定的 这就是德鲁克公设 在应力循环中 外载所作的功为 不论材料是不是稳定 上述总功不可能是负的 不然 我们可通过应力循环不断从材料中吸取能量 这是不可能的 要判断材料稳定必须依据德鲁克公设 即附加应力所作的塑性功不小零得出 由于弹性应变 ije在应力循环中是可逆的 因而 于是有 3 德鲁克塑性公设的重要推论 屈服面的外凸性 塑性应变增量方向与加载曲面正交 1屈服曲面的外凸性 此式限制了屈服面的形状 对于任意应力状态 应力增量方向与塑性应变向量之间所成的夹角不应该大于90 稳定材料的屈服面必须是凸的 a 满足稳定材料的屈服面 b 不满足稳定材料的屈服面 2塑性应变增量向量与屈服面法向平行 加载面 切平面 标量d 称为塑性因子 意义 只有当应力增量指向加载面的外部时才能产生塑性变形 3德鲁克塑性公设的评述 德鲁克公设的适用条件 1 应力循环中外载所作的真实功与 ij0起点无关 应力循环中外载所作真实功与附加应力功 2 附加应力功不符合功的定义 并非真实功 4 德鲁克公设的适用条件 ij0在塑性势面与屈服面之内时 德鲁克公设成立 ij0在塑性势面与屈服面之间时 德鲁克公设不成立 附加应力功为非负的条件 3 非真实物理功不能引用热力学定律 势面线 屈服面 5 金属材料的塑性势面与屈服面基本一致 3 1 3依留申塑性公设的表述 依留申塑性公设 在弹塑性材料的一个应变循环内 外部作用做功是非负的 如果做功是正的 表示有塑性变形 如果做功为零 只有弹性变形发生 设材料单元体经历任意应力历史后 在应力 ij0下处于平衡 即初始的应变 ij0在加载面内 然后在单元体上缓慢地施加荷载 使 ij达到屈服面 再继续加载达到应变点 ij d ij 此时产生塑性应变d ijp 然后卸载使应变又回到原先的应变状态 ij0 并产生了与塑性变量所对应的残余应力增量d ijp 残余应力增量与塑性应变增量存在关系 式中 D为弹性矩阵 根据依留申公设 在完成上述应变循环中 外部功不为负 即 只有在弹性应变时 上述WI 0 根据Druker塑性公设 可将Druker塑性公设改写成 由图 a 可知 对于弹性性质不随加载面改变的非耦合情况 外部作用在应变循环内做功WI和应力循环所作的外部功之间仅差一个正的附加项 因此可将应变循环所作的外部功 写成 上式表明 如果德鲁克塑性公设成立 WD 0 则依留申塑性公设也一定成立 反之 依留申塑性公设成立 并不要求WD 0 也就是说 德鲁克塑性公设是依留申塑性公设的充分条件 而不是必要条件 A B C D 当应力点由A到B时 d 0 塑性变形d p 0 总变形d 0 应变空间加载面外凸 加载准则 取大于号表示有新的塑性变形发生 根据关于的正交法则 可得 由应力空间中的屈服与应变空间中屈服面的转换关系 可得 结合 可得 3 1 4塑性位势理论与流动法则 与弹性位势理论相类似 Mises于1928年提出塑性位势理论 他假设经过应力空间的任何一点M 必有一塑性位势等势面存在 其数学表达式称为塑性位势函数 记为 或 式中 为硬化参数 塑性应变增量可以用塑性位势函数对应力微分的表达式来表示 即 上式就称为塑性位势理论 它表明一点的塑性应变增量与通过该点的塑性势面存在着正交关系 这就确定了应变增量的方向 也就确定了塑性应变增量各分量的比值 流动规则也称为正交定律 是确定塑性应变增量各分量的比值 也即塑性增量方向的一条规定 上式是流动规则的一种表示形式 另外还有另一种表示形式 它表明塑性应变增量与通过该点的屈服曲面成正交关系 与德鲁克公设表达式比较 可以看出 服从于德鲁克公设的材料 塑性势函数g就是屈服函数 即g 由此得到的塑性应力应变关系通常称为与加载条件相关联的流动法则 如果g 即屈服面与塑性应变增量不正交 则其相应的塑性应力应变关系称为非关联流动法则 在应变空间 流动规则可用下式表示 和 都为非负的比例系数 3 2硬化规律 塑性模型三要素 屈服条件 流动法则 硬化规律 判断何时达到屈服 屈服后塑性应变增量的方向 也即各分量的比值 决定给定的应力增量引起的塑性应变增量大小 硬化规律 加载面在应力空间中的位置 大小和形状的变化规律 确定加载面依据哪些具体的硬化参量而产生硬化的规律称为硬化定律 硬化模型 实际土体硬化规律 简化假设 如采用等值面硬化理论 主应力方向不旋转 加载面形状不变等 金属材料 采用等向强化和随动强化 岩土材料 静力问题采用等向强化 循环荷载和动力问题采用随动强化或混合强化 常用模型 3 2 1等向强化模型 这种模型无论在哪个方向加载拉伸和压缩强化总是相等地产生和开展 在复杂加载条件下 即表示应力空间中作形状相似的扩大 如图中OABDD E 代表等向强化 图中B与D 点所对应的应力值均为 s 指绝对值 在这种情况下 压缩屈服应力和弹性区间都随着材料强化而增大 在应力空间中 这种后继屈服面的大小只与最大的应力状态有关 而与中间的加载路径无关 在右图中 路径1与路径2的最终应力状态都刚好对应于加载过程中最大应力状态 因此两者的最终后继屈服是一样的 而路径3的最终后继屈服面由加载路径中最大应力状态来定 3 2 2随动强化模型 图中OABCDE代表随动强化模型 弹性卸载区间是衬始屈服应力 s的两倍 根据这种模型 材料的弹性区间保持不变 但是由于拉伸时的强化而使压缩屈服应力幅值减小 与等向强化模型不同 随动强化模型是考虑包辛格效应的 在单向拉压情况下 随动强化模型可以用下式表示 包辛格逆效应 Bauschinger 分直接包辛格效应及包辛格逆效应 直接包辛格效应指拉伸后钢材纵向压缩屈服强度小于纵向拉伸屈服强度 如图1所示 包辛格逆效应在相反的方向产生相反的结果 如图2所示 普拉格将随动强化模型推广到复杂应力状态中 他假定在塑性变形过程中 屈服面形状和大小都不改变 只是在应力空间内作刚体平移 3 2 3混合强化模型 运动硬化和等向硬化的组合 可以构成更一般的硬化模型 称为混合强化模型 这时 后继屈服面既有位置的改变 也产生均匀的膨胀 等向强化 混合强化 随动强化 运动强化 初始屈服面 3 2 4加工硬化规律 加工硬化规律是决定一个给定的应力增量引起的塑性应变增量的一条规则 在流动规律中 d 这个因素可以假定为 式中 A为硬化参数H 的函数 不同的学者曾建议不同的硬化规律来计算A的数值 常用的硬化规律有下列几种 塑性功Wp硬化定律 矩阵形式 由 得 塑性应变 ijp硬化定律 进一步有 由 得 塑性体应变 vp硬化定律 设 广义塑性力学中 如果取 于是 矩阵形式 由 则有 3 3弹塑性本构关系 屈服条件 流动法则 硬化规律 判断何时达到屈服 屈服后塑性应变增量的方向 也即各分量的比值 决定给定的应力增量引起的塑性应变增量大小 本节内容 塑性本构关系 弹性本构关系 弹塑性本构关系 塑性增量理论又称为塑性流动理论 它把塑性变形看成非线性流动 塑性增量理论把应变增量分为弹性应变增量和塑性应变增量两部分 即式中 弹性应变增量应用广义虎克定律计算 塑性应变增量根据塑性增量理论计算 塑性增量理论主包括三个部分 关于屈服面理论 关于流动规则理论 关于加工硬化 或软化 理论 应用弹塑性增量理论计算塑性应变 首先 要确定材料的屈服条件 对加工硬化材料 需要确定材料是否服从相关联流动规则 若材料服从不相联流动规则 沿需确定材料的塑性势函数 然后 还需要确定材料的硬化或软化规律 最后可运用流动规则理论确定塑性应变增量的方向 根据硬化规律计算塑性应变增量的大小 3 3 1塑性增量理论 3 3 2一个普遍的弹塑性模量张量表达式 加工硬化规律是决定一个给定的应力增量引起的塑性应变增量的一条规则 在流动规律中 d 这个因素可以假定为 广义虎克定律用增量形式表示 根据塑性势函数 以及 进一步有 b a 将 b 代入 a 得 再代入 b 得 弹塑性模量张量 弹性状态 应力状态 弹性应变 塑性状态 当前应力状态 加卸载状态 加载历史 加载路径 微观结构 塑性应变 沿加载路径积分 应力应变全量关系 应力应变增量关系 弹塑性本构关系的建立 3 3 3广义虎克定律 基本方程 增量表达式 于是 于是 代入 引入侧限变形模量M 弹性常数关系表 3 3 4无静水压力影响的理想弹塑性材料本构关系 理想塑性材料 适用于金属材料 采用相关联流动法则 由于某屈服单元周围材料仍处于弹性状态 限制了其塑性应变的发展 其d 值不会任意发展 而将依靠问题的整体来定 屈服函数记为 塑性应变增量 可改写为 于是有 在塑性变形阶段 加载时 根据 于是 理想弹塑性材料的本构方程可表示为 又可写成 1 PrandtlReuss模型 PrandtlReuss模型是最简单的理想弹塑性模型 材料屈服函数采用Mise
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑料厂办公设备管理规范制度
- 化肥厂采购设备更新规章
- 2025年小学租房合同范本
- 粤教版高 一 信息技术 必修一教学设计:1.1 信息及其特征
- 3.3《天气系统-气旋和反气旋》教学设计-2024-2025学年湘教版(2019)高中地理选择性必修一
- 本册综合教学设计-2025-2026学年小学信息技术(信息科技)六年级下册青岛版(六三制)
- Unit 4 Perseverance and Success Exploring and Using 教学设计-2024-2025学年高中英语重大版(2019)选择性必修第二册
- 2025江苏苏州常熟市基层公共服务岗位招聘低收入家庭、困难家庭和就业困难高校毕业生25人考试备考试题及答案解析
- 矿山企业工伤赔偿项目和赔偿标准合同
- 建筑施工模板及脚手架安装拆除一体化承包合同
- 关于成立特种设备安全管理机构的通知(模板)
- 食品添加剂欧盟编码纯中文版
- 全自动生化分析仪advia2400中文操作手册
- 建筑室外围蔽板材(简化)
- YS/T 397-2015海绵锆
- GB/T 3217-1992永磁(硬磁)材料磁性试验方法
- GB/T 250-2008纺织品色牢度试验评定变色用灰色样卡
- GB/T 2091-2008工业磷酸
- GB/T 19816.2-2005涂覆涂料前钢材表面处理喷射清理用金属磨料的试验方法第2部分:颗粒尺寸分布的测定
- 市政工程工程量计算规范课件
- 隐身技术概述课件
评论
0/150
提交评论