




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新课程高中数学测试题组数学选修4-4 坐标系与参数方程综合训练B组一、选择题1直线的参数方程为,上的点对应的参数是,则点与之间的距离是( )A B C D 2参数方程为表示的曲线是( )A一条直线 B两条直线 C一条射线 D两条射线3直线和圆交于两点,则的中点坐标为( )A B C D 4圆的圆心坐标是( )A B C D 5与参数方程为等价的普通方程为( )A B C D 6直线被圆所截得的弦长为( )A B C D 二、填空题1曲线的参数方程是,则它的普通方程为_。2直线过定点_。3点是椭圆上的一个动点,则的最大值为_。4曲线的极坐标方程为,则曲线的直角坐标方程为_。5设则圆的参数方程为_。三、解答题1参数方程表示什么曲线?2点在椭圆上,求点到直线的最大距离和最小距离。3已知直线经过点,倾斜角,(1)写出直线的参数方程。(2)设与圆相交与两点,求点到两点的距离之积。数学选修4-4 坐标系与参数方程.提高训练C组一、选择题1把方程化为以参数的参数方程是( )A B C D 2曲线与坐标轴的交点是( )A B C D 3直线被圆截得的弦长为( )A B C D 4若点在以点为焦点的抛物线上,则等于( )A B C D 5极坐标方程表示的曲线为( )A极点 B极轴 C一条直线 D两条相交直线6在极坐标系中与圆相切的一条直线的方程为( )A B C D 二、填空题1已知曲线上的两点对应的参数分别为,那么=_。2直线上与点的距离等于的点的坐标是_。3圆的参数方程为,则此圆的半径为_。4极坐标方程分别为与的两个圆的圆心距为_。5直线与圆相切,则_。三、解答题1分别在下列两种情况下,把参数方程化为普通方程:(1)为参数,为常数;(2)为参数,为常数;2过点作倾斜角为的直线与曲线交于点,求的值及相应的的值。参考答案数学选修4-4 坐标系与参数方程 综合训练B组一、选择题 1C 距离为2D 表示一条平行于轴的直线,而,所以表示两条射线3D ,得, 中点为4A 圆心为5D 6C ,把直线代入得,弦长为二、填空题1 而,即2 ,对于任何都成立,则3 椭圆为,设,4 即5 ,当时,;当时,; 而,即,得三、解答题1解:显然,则 即得,即2解:设,则即,当时,;当时,。3解:(1)直线的参数方程为,即 (2)把直线代入得,则点到两点的距离之积为数学选修4-4 坐标系与参数方程 提高训练C组一、选择题 1D ,取非零实数,而A,B,C中的的范围有各自的限制2B 当时,而,即,得与轴的交点为; 当时,而,即,得与轴的交点为3B ,把直线代入得,弦长为4C 抛物线为,准线为,为到准线的距离,即为5D ,为两条相交直线6A 的普通方程为,的普通方程为 圆与直线显然相切二、填空题1 显然线段垂直于抛物线的对称轴。即轴,2,或 3 由得4 圆心分别为和5,或 直线为,圆为,作出图形,相切时,易知倾斜角为,或 三、解答题1解:(1)当时,即; 当时, 而,即(2)当时,即;当时,即;当时,得,即得即。2解:设直线为,代入曲线并整理得则所以当时,即,的最小值为,此时。综合训练B组一、选择题1设,且恒成立,则的最大值是( ) A B C D2 若,则函数有( )A最小值 B最大值 C最大值 D最小值 3设,则的大小顺序是( ) A B C D4设不等的两个正数满足,则的取值范围是( ) A B C D5设,且,若,则必有( ) A B C D6若,且, ,则与的大小关系是 A B C D二、填空题1设,则函数的最大值是_。2比较大小:3若实数满足,则的最小值为 4若是正数,且满足,用表示中的最大者,则的最小值为_。5若,且,则。三、解答题1如果关于的不等式的解集不是空集,求参数的取值范围。2求证:3当时,求证:4已知实数满足,且有 求证:提高训练C组一、选择题1若,则的最小值是( ) A B C D2,设,则下列判断中正确的是( ) A B C D3若,则函数的最小值为( ) A B C D非上述情况4设,且, , ,则它们的大小关系是( ) A B C D二、填空题1函数的值域是 .2若,且,则的最大值是 3已知,比较与的大小关系为 .4若,则的最大值为 .5若是正数,且满足,则的最小值为_。三、解答题1 设,且,求证:2已知,求证:3已知,比较与的大小。4求函数的最大值。 5已知,且 求证:参考答案:数学选修4-5 不等式选讲 综合训练B组一、选择题1C ,而恒成立,得2C 3B ,即; 又,即,所以4B ,而 所以,得5D 6A ,即二、填空题1 ,即2 设,则,得 即,显然,则3 即,4 ,即5 而即,而均不小于得,此时,或,或,得,或,或三、解答题1解: 当时,解集显然为, 所以2证明: 即3证明: (本题也可以用数学归纳法)4证明: 是方程的两个不等实根, 则,得 而 即,得 所以,即 提高训练C组一、选择题1A 由得,而2B 即,得,即,得,所以3B 4A 为平方平均数,它最大二、填空题1 ,得 2 3 构造单调函数,则,即,恒成立,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论