2012年苏教版初中数学八年级上2.5实数练习卷(带解析)_第1页
2012年苏教版初中数学八年级上2.5实数练习卷(带解析)_第2页
2012年苏教版初中数学八年级上2.5实数练习卷(带解析)_第3页
2012年苏教版初中数学八年级上2.5实数练习卷(带解析)_第4页
2012年苏教版初中数学八年级上2.5实数练习卷(带解析)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012年苏教版初中数学八年级上2.5实数练习卷(带解析)一、选择题1.在下列实数中,无理数是ABC0D4【答案】A【解析】试题分析:根据无理数的三种形式依次分析各项即可。B.,C.0,D.4,均是有理数,不符题意;A是无理数,故本选项正确.考点:本题考查的是无理数的定义点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.2.如图,数轴上点表示的数可能是ABCD【答案】B【解析】试题分析:先分别估算出各项的范围,即可判断。,故选B.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法3.一个正偶数的算术平方根是,那么与这个正偶数相邻的下一个正偶数的平方根( )ABCD【答案】C【解析】试题分析:先根据算术平方根的定义表示出这个正偶数,即可表示出与这个正偶数相邻的下一个正偶数,再根据平方根的定义即可得到结果。正偶数的算术平方根是,这个正偶数为,与这个正偶数相邻的下一个正偶数为,平方根为,故选D.考点:本题考查的是平方根,算术平方根点评:解答本题的关键是熟练掌握一个正数有两个平方根,它们互为相反数,其中正的平方根叫做它的算术平方根。4.下列各数中,是无理数的有( ),0.030 030 003,057143,A2个B3个C4个D5个【答案】B【解析】试题分析:根据无理数的三种形式依次分析即可。=10,=1,无理数有,0.030 030 003共3个,故选B.考点:本题考查的是无理数的定义点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.5.实数在数轴上对应的点如图所示,则,的大小关系正确的是( )ABCD【答案】D【解析】试题分析:先根据数轴可得,且,即可判断。由数轴可知,且,则,故选D.考点:本题考查的是数轴与实数的关系点评:解答本题的关键是熟练掌握数轴的特征,得到,且6.在实数,中,无理数有( )A1个B2个C3个D4个【答案】B【解析】试题分析:根据无理数的三种形式依次分析即可。=3,无理数有,共2个,故选B.考点:本题考查的是无理数的定义点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.7.如图,数轴上A、B两点所表示的两数的( )A. 和为正数 B. 和为负数C. 积为正数 D. 积为负数【答案】D【解析】试题分析:先根据数轴得到A、B所对的数,即可判断。由数轴可得,则,故选D.考点:本题考查的是数轴与实数的关系点评:解答本题的关键是熟练掌握数轴的特征,同时熟记相反数之和为0.8.下列说法正确的是 ( )A有理数只是有限小数B无限小数是无理数C无理数是无限小数D是分数【答案】C【解析】试题分析:根据有理数、无理数的定义依次分析各项即可。A.无限循环小数也是有理数,B. 无限循环小数是有理数,D. 是无理数,故错误;C.无理数是无限小数,本选项正确.考点:本题考查的是实数的分类点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.9.下列说法:无理数都是无限小数,=, ,实数与数轴上的点一一对应.其中正确的有 ( )A1个B2个C3个D4个【答案】B【解析】试题分析:根据实数的分类,算术平方根的定义依次分析即可。无理数都是无限小数,实数与数轴上的点一一对应,正确;=, (),错误;故选B.考点:本题考查的是实数的分类,算术平方根点评:解答本题的关键是熟练掌握等式(),必须具备的前提。10.实数,-中,有理数有 ( ).A1个B2个C3个D4个【答案】B【解析】试题分析:根据有理数、无理数的定义依次分析各项即可。有理数有,=3,共2个,故选B.考点:本题考查的是实数的分类点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.11.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有 ( )A.1条 B.2条 C.3条 D.4条【答案】B【解析】试题分析:先根据勾股定理算出各条线段的长,即可判断。,、的长度均是有理数,故选B.考点:本题考查的是勾股定理点评:解答本题的关键是熟练掌握网格的特征,灵活选用恰当的直角三角形使用勾股定理。12.要使,的取值为( )A4B 4C04D一切实数【答案】D【解析】试题分析:根据立方根的定义即可得到结果。由题意得,的取值为一切实数,故选D.考点:本题考查的是立方根的定义点评:求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同13.分析下列说法:实数与数轴上的点一一对应;没有平方根;任何实数的立方根有且只有一个;平方根与立方根相同的数是0和.其中正确的有( )A1个B2个C3个D4个【答案】B【解析】试题分析:根据平方根,立方根的定义依次分析即可。实数与数轴上的点一一对应,任何实数的立方根有且只有一个,正确;当时,的平方根是0;平方根与立方根相同的数是0,故错误;故选B.考点:本题考查的是平方根,立方根点评:解答本题的关键是熟练掌握一个正数有两个平方根,它们互为相反数;正数的立方根是正数,0的立方根是0,负数的立方根是负数。14.如图,数轴上点N表示的数可能是 ()ABCD【答案】A【解析】试题分析:先分别估算出各项的范围,即可判断。,故选A.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法15.a是一个无理数,且满足34,则a可能是( )ABCD【答案】C【解析】试题分析:先分别估算出各项的范围,即可判断。,故选C.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法16.有下列说法:有理数和数轴上的点一一对应,不带根号的数一定是有理数,负数没有立方根,是17的平方根,其中正确的有 ( )A0个B1个C2个D3个【答案】B【解析】试题分析:根据实数的分类,立方根、平方根的定义依次分析即可。实数和数轴上的点一一对应,是无理数,负数的立方根是负数,故错误;是17的平方根,正确;故选B.考点:本题考查的是实数的分类,立方根,平方根点评:解答本题的关键是熟练掌握一个正数有两个平方根,它们互为相反数;正数的立方根是正数,0的立方根是0,负数的立方根是负数。17.若数轴上表示数x的点在原点的左边,则化简的结果是( )A-4xB4xC-2xD2x【答案】C【解析】试题分析:先判断出x的范围,再根据绝对值的规律化简即可。由题意得,则,故选C.考点:本题考查的是数轴与实数的关系,绝对值点评:解答本题的关键是熟练掌握绝对值的规律:正数和0的绝对值是它本身,负数的绝对值是它的相反数.二、填空题1.写出一个大于1且小于4的无理数_.【答案】如等【解析】试题分析:根据无理数的定义即可判断。如等.考点:本题考查的是无理数的定义点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.2.写出和为6的两个无理数_(只需写出一对)【答案】答案不惟一,如:与;与【解析】试题分析:只要使无理数部分和为0即可。答案不惟一,如:与;与考点:本题考查的是实数的加法点评:解答本提到关键是注意所选的两个无理数相加时,只要使无理数部分和为0即可。3.如图,在数轴上,两点之间表示整数的点有_个.【答案】4【解析】试题分析:先分别估算出两点所表示的数的范围,即可判断。,两点之间表示整数的点有-1、0、1、2共4个.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法4.请将下列实数填入相应的括号内:,(小数部分由连续的正整数组成)有理数集合: 无理数集合: 【答案】有理数集合:,无理数集合:,【解析】试题分析:根据有理数、无理数的定义即可判断。有理数集合:,无理数集合:,.考点:本题考查的是实数的分类点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.5.如图,已知OA=OB,那么数轴上点A所表示的数是_.【答案】-【解析】试题分析:先根据勾股定理算出OB的长,即可判断。,点A在原点的左边,点A所表示的数是考点:本题考查的是无理数在数轴上的表示点评:解答本题的关键是灵活选用恰当的直角三角形使用勾股定理。6.已知聪明的同学你能不用计算器得出(1)_;(2)_;(3)_.【答案】(1)3.984;(2)-0.03984;(3)0.05414【解析】试题分析:认真分析所给特征及可判断。(1);(2);(3);考点:本题考查的是实数的计算点评:解答本题的关键是仔细分析,观察所求的数与所给的数的关系。7.请写出不等式的一个无理数解:_.【答案】答案不确定,如等【解析】试题分析:先解出不等式,即可判断。由不等式,解得,故答案可以为.考点:本题考查的是无理数的估算点评:解答本题的关键是熟知用“夹逼法”估算无理数是常用的估算无理数的方法8.实数a在数轴上位置如图所示,化简_【答案】1【解析】试题分析:先根据数轴得到a的范围,再根据绝对值,二次根式的性质化简即可。由数轴可得,则考点:本题考查的是数轴与实数的关系,绝对值,二次根式的性质点评:解答本题的关键是熟练掌握,同时熟记绝对值的规律:正数和0的绝对值是它本身,负数的绝对值是它的相反数9.观察并分析下列数据,寻找规律: 0,,-,3,-2,-3,那么第10个数据是_ ;第n个数据是_ .【答案】3,(-1)n【解析】试题分析:先分析所给数据的规律,即可得到结果。,第10个数据是,第n个数据是.考点:本题考查的是数字的变化点评:解答本题的关键是根据所给数据得到规律,再应用所得规律解决问题。三、解答题1.把下列各数填入相应的大括号里,,2,-,|-|,2.3,30%,(1)整 数 集: (2)有理数集: (3)无理数集:【答案】(1)2,;(2)2,-,30%,;(3), |-|【解析】试题分析:根据整数、有理数、无理数的定义即可判断。整 数 集: 2,有理数集合:2,-,30%,无理数集合:, |-|, .考点:本题考查的是实数的分类点评:解答本提到关键是熟练掌握无理数的三种形式:开方开不尽的数;无限不循环小数;含有的数.2.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要说明理由)【答案】如图所示:【解析】试题分析:因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可如图所示:过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点考点:本题考查了无理数用数轴上的点表示的方法点评:解答本题的关键是灵活选用恰当的直角三角形使用勾股定理。3.利用如图的方格,作出面积为8平方单位的正方形并涂上阴影,然后在下面的数轴上表示实数(保留做图痕迹)【答案】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论